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ABSTRACT 
 

    Study of internal physical properties for hadrons (protons) is very important 

in physics. These properties are investigated by using different techniques. 

Elastic scattering experiments are one of them. Scattering theory using 

Quantum Electro-Dynamics (QED), is a suitable method especially for high 

energy experiments. Feynman diagrams are applied for Lepton-Hadron 

scattering to give a suitable expression for scattering cross-section known as 

Mott formula. In this thesis we drive it for electron-proton elastic scattering. 

A comparison between this prediction and experimental measurements is 

discussed. At low values of momentum transfer, the proton appears as a point-

like particle while its constituents appear to be contributed to scattering 

process with high values. It concludes that there is a modified factor that must 

be added to Mott formula. This factor is related to electric and magnetic 

properties of the internal constituents of proton. These factors are called form 

factors. By comparison with experimental data, the calculated values agreed 

with that obtained from other groups. The charge radius of proton is expected 

to be 0.81 fm. Different images for proton are obtained due to different values 

of momentum transfer and compared with the photon wavelength.  
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1.1 Introduction 

      Nuclear physics represents a basic branch of science, and it developed 

back to Becquerel's discovery of radioactivity in 1896 in addition to 

Rutherford's experiment of the existence of the nucleus in 1911. Experimental 

and theoretical research in nuclear physics has been a significant contributor 

to the growth in science of the twentieth century. The overall positive charge 

in the nucleus as well as the total number of mass units define a nuclear 

species. All elements are characterized by atomic number Z and charge Q 

where 𝑄 =  +𝑍𝑒 and |𝑒| = 1.6 × 10−19 C, the magnitude of the electronic 

charge. The fundamental positively charged particle in the nucleus is the 

proton, which is considered the nucleus of the simplest atom, hydrogen. 

Atoms of the elements are electrically neutral charge they must have Z 

negatively charged electrons. The nucleus must contain additional large mass 

components called neutrons of number N. This number is independent of Z. 

The sum of 𝑍 + 𝑁 = 𝐴 is called mass number or nucleon number. We 

discover that nuclides with a particular atomic number can have multiple 

various mass numbers, i.e., a nuclide with Z protons can have a range of 

different neutron numbers. Isotopes are nuclides that share the same proton 

number but have different neutron numbers; For instance, the two isotopes 

17Cl35 and 17Cl37. They have unified chemical properties but differ in nuclear 

properties because they have different neutron numbers. The term "isotone" 

is frequently used to describe a group of nuclides that share the same N but 

have various Z. 2H and 3He are the stable isotones with N = 1. Isobars are 

nuclides that have the same mass number A; for example, radioactive 3H and 

stable 3He are both isobars. Because the mass of the electrons is so little in 

comparison to the mass of the proton (neutron) (mp=2000 me). The electron 
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may frequently be neglected when talking about the mass of an atom. In 

nuclear physics we use suitable scale of measuring lengths of the order of      

10−15m, which is one femtometer (fm). The proton radius is around 1 fm, and 

the radius of nuclei increases with mass number to reach about 7 fm. For 

nuclear mass the used unit is called atomic mass unit u where 1 𝑢 =

1.6605402 × 10−27𝐾𝑔. It defined such that the mass of an atom of 12C is 

precisely 12 u. As a result, the nucleons have masses of around 1 u.  For 

nuclear energies, we use relativistic mass-energy relation E=mc2 where c is 

the speed of light. The conversion factor is 1u = 931.502 MeV; so, the 

nucleons have mass energies of approximately 1000 MeV. Sometimes the 

masses of nuclear material are represented in terms of their energies [1] 

1.2 Natural Units 

In high energy and particle physics it is important to introduce suitable units 

relevant to fundamental constants of relativistic quantum mechanics. The 

magnitudes of both Plank’s constant h and c are used by units’ value h = c = 

1. Dimensional analysis may always be used to determine precisely where the 

h's and c's enter any equation. As a result, it is common to speak about mass 

(m), momentum (mc), and energy (mc2) all in terms of GeV, also to measure 

length (ħ/mc) and time (ħ/mc2) in units of GeV- 1 where ℏ = ℎ/2𝜋 . We haven't 

talked about the elementary charge e, which indicates how strongly two 

electrons interact electromagnetically with one another. We analyze the 

electromagnetic force of repulsion between two electrons separated by one 

natural unit of length with the rest mass energy of an electron to derive a 

dimensionless measure of the intensity of this interaction. The coupling 

constant α (fine structure constant), for electromagnetic interactions will be 

often employed and is defined as 𝛼 =
𝑒2

4𝜋𝜀𝑜ℏ𝑐
 ≈  

1

137
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In atomic physics, 4𝜋𝜀𝑜 = 1, hence 𝛼 =  𝑒2 in Gauss system of units. while 

𝛼 = 𝑒2/4𝜋 are more widely employed in particle physics and known as the 

fine structural constant.[2] 

1.3 Nature Fundamental Forces 

     Our understanding of the fundamental forces of nature, and hence of the 

fundamental interactions between elementary particles, has developed with 

our picture of elementary particles. By the end of the nineteenth century, 

electricity and magnetism were accepted to be expressions of the same force 

called electromagnetism. Later, it was discovered that atoms have a structure 

and are made up of a positively charged nucleus and an electron cloud, with 

the entire kept together by electromagnetic system. Nuclear physics provided; 

two new short-ranged forces joined the ranks. These are the nuclear force, 

which operates between nucleons, and the other is the weak force, which 

reveals itself in nuclear decay[3]. Nuclear force is caused by the strong force 

bringing quarks together to produce protons and neutrons. These strong and 

weak forces cause the equivalent basic interactions between elementary 

particles. The four fundamental interactions on which all physical phenomena 

are founded are gravity, electromagnetic interaction, strong interaction, and 

weak interaction. While gravity is necessary for the survival of stars, galaxies, 

and planetary systems, it has no bearing on subatomic physics since it is 

simply too weak to impact the interaction of fundamental particles. Some 

properties of each interaction are summarized and given in table 1.1  
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Table 1.1: Classification of Fundamental Forces of Nature. 

Types of Force 
Coupling 

Constant 

(α) 
Theory 

Mediator 

Particles 

Mass 

(GeV/c2) 
Range 

(meter) 

Strong 1 Chromodynamics Gluon 0 10-15 

Electromagnetic 1/137 Electrodynamics Photon 0 infinite 

Weak 10-6 Flavor dynamics W , Z 
MW ≈ 80  

MZ ≈ 91 
10-18 

Gravitational 10-39 Geometro dynamic Graviton 0 infinite 

All interactions are explained by considering mediator boson particles 

characterized by unit spin. In electromagnetic interactions, they are photons, 

in strong interactions, gluons, and in weak interactions, the W+, W-, and Z0 

bosons.  

  

  

Figure 1.1: Feynman Diagrams for Different Interactions. 

 
Figure (1.1) gives examples of interactions between two particles via boson 

exchange. These straight lines represent leptons and quarks. The wavy lines 

represent photons while spirals represent gluons, and dashed lines represent 
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W and Z0 bosons. Each of these three interactions has a specific charge 

attached to it. An interaction occurs when a particle possesses between their 

charges. The interactions are characterized by a factor called coupling 

constant (α) which is defined in terms of electromagnetic interactions as the 

ratio between potential energy and photon energy. The coupling constant is 

maximum for strong interaction and decreases to zero for gravitational force. 

In electromagnetic interactions, the intermediate boson particle is the photon 

which has zero rest mass. As a result, it has an indefinite range. There is a 

boson particle like photon, called gluon have no rest mass. The gluon particle 

is responsible for strong interaction. Photons have no electrical charge while 

gluons hold a color charge responsible for interaction with one other. The W 

and Z bosons, with masses of MW ≈ 80 GeV/c2 and MZ ≈ 91 GeV/c2, are extra 

ordinary heavy particles.[4]  

1.4 Proton Structure  

       Electron is elementary particle which has a single charge e and has 

magnetic momentum 𝜇𝑒 =
𝑒ℏ

2𝑚𝑒
  associated to it and has been measured 

experimentally [4]. When protons and neutrons were discovered in 1919 and 

1931, respectively, they were thought to be like electrons. Proton was intended 

to be point-like, with similar electron charge and mass mp as represented by:                                                                         

𝜇𝑝 =
𝑒ℏ

2𝑚𝑝
                                             (1.1) 

The expected value for neutron is zero because it is a neutral particle. 

  𝜇𝑛 = 0                                               (1.2) 

Further measurements of the magnetic moments of these nucleons are  



 

(15) 
 

𝜇p = 2.7928444
𝑒ℏ

2𝑚𝑝
   ,   𝜇n = −1.91304308

𝑒ℏ

2𝑚𝑝
             (1.3) 

 which contradicts the expected values. It gives the first evidence to confirm 

the presence of the nucleon substructure. The Second evidence is the analogy 

between behavior of the measurements of scattering experiments for both 

Rutherford scattering of alpha particles on gold nucleus and which carried for 

electron on single proton. The scattering data is shown in figure (1.2). 

 

Figure 1.2: Scattering Experiments of gold nucleus and proton. 

The experimental data for both scattering processes is assumed due to 

scattering off point-like particles with specific charge and mass to agree the 

dashed lines, but it deviated. This confirms the proton is not an elementary 

particle and has internal structure of partons latterly known as quarks which 

are collected to give proton properties. 

After discovering the substructure of nucleons (protons and neutrons), we now 

live with the notion of the standard model, and it will be quickly explained 

that all matter is made up of three types of fundamental particles: leptons, 

quarks, and mediators. There are six leptons, each with its own charge (Q), 
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electron number (Le), muon number (Lm), and tau number (Lτ). They are 

naturally divided into three families: 

                              Table 1.2: Lepton Classification. 

L Q Le Lµ Lτ 

e -1 1 0 0 

νe 0 1 0 0 

µ -1 0 1 0 

νµ 0 0 1 0 

τ -1 0 0 1 

ντ 0 0 0 1 

There are six antileptons, which have all their signs inverted. For example, the 

positron has a charge of +e and an electron number of -e. So, in total, there 

are 12 leptons. Similarly, quarks are classified into three quarks called up 

quark u has charge +
2

3
 , down quark d has charge −

1

3
  and strange s its charge 

is −
1

3
 . The theory of standard model proposed proton is composed of uud 

combination and neutron is udd. The antiquarks take inverted sign.  

The first explanation of strong interaction was by Yukawa theory (1934) to 

explain the nuclear force [4]. He assumed a mediator boson called π-meson 

of mass ≈ 139 MeV/c2 and coming with charge ± e and natural. So, the issue 

becomes, what particle is transferred between two quarks in a strong process 

of nucleon? Now, nuclear force is explained by quark-quark interaction rather 

than nucleon-nucleon interaction. The Standard Model has eight of these 

mediators, known as gluons. Quarks and gluons carry color charges red, 

green, and blue in addition to their anti-colors. Nucleons are a combination of 

these colors to form colorless particles. Quarks should not exist as 

independent particles. At high energy nuclear collisions of hadron-hadron, 

hadron-nucleus and nucleus -nucleus, there is creation of a large number of 
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mesons (combination of quark and antiquark) with high multiplicities 

depending on collision energies. It explained by assumptions that there is 

quark-quark, quark- gluon and gluon-gluon interactions. These are 

responsible for the creation of high multiplicities of quarks and anti-quarks to 

form hadrons that appear as new mesons which experimentally recorded. The 

predicted mathematical theory which is used for this analysis is called 

quantum chromodynamics. 

In order to reach a complete description of the nuclear force we must study 

the fine properties of the internal constituents of hadrons like proton and 

neutron. This requires many scattering experiments using lepton particles as 

electrons scattered off hadron such as proton. In this thesis, we will be 

interested in electron-proton scattering in terms of theoretical predictions by 

quantum electrodynamic theory at wide range of energy. Then comparing 

these predictions with experiments. 

In the next chapter we will study the theory of quantum electrodynamic and 

scattering process using Feynman diagram and Fermi-Golden rule to derive 

the elastic cross-section of electron proton scattering called Mott’s formula.  
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Chapter 2  
 

Scattering Theory 
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2.1 Primitives 

 

    Scattering process between two bodies reveals information about the 

microscopic details of the materials specially at high energy and scattering 

among elementary particles against each other can reveal information about 

the existence of new fundamental particles.  Scattering theory is the 

mechanical formalism in which one body is called projectile and the other is 

target. Scattering process can be explained in different ways according to the 

nature of both projectile and target in addition to the scattering energies. One 

of these techniques is classical mechanics which treats bodies as rigid ones 

with defined mass and momentum. There is another formalism, quantum 

mechanics which deals with the wave nature of particles that accompanied the 

particle during its motion. An important treatment called Quantum Electro 

Dynamics QED that deals with high energy scattering among elementary 

particles. There are two types of scattering one is the elastic scattering at 

which the energy and nature for both projectile and target are conserved. The 

other type is the inelastic scattering to which the conservation laws are not 

applicable. Figure (2.1) gives a simple diagram of the basic idea of scattering 

mechanism. A small projectile with specific physical properties (charge, mass, 

energy) is directed towards a fixed target with a relatively large size and a 

suitable value of impact parameter b (the distance between the centers 

interacting particles). The projectile will interact in some way and deviate by 

an angle called scattering angle θ, measured from the direction of incidence. 

In the following sections, we will give short notes on some possible treatment 

of this process according to different assumptions.[5] 
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Figure 2.1: An illustration of hard sphere scattering. 

2.2 Classical Mechanics in Scattering Theory 

 

     Classical theory of scattering considers both projectile and target are hard 

spheres. They will not orbit each other but approach before the repulsive 

potential U(r) causes them to move away and never meet again. This type of 

behavior is shown in figure (2.1). The parameter r is the distance between the 

center of scattering and the center of the target. In this mechanism a projectile 

is directed from distance of infinity where 𝑟 > 𝑅 and U(r) = 0 in which there 

is no forces exerts on its motion. The projectile doesn’t suffer any deviation 

and continues along its direction. When projectile collides with the target 

surface r = R it will be exerted by a force due to potential energy U(r) and 

suffers a deflection by angle θ. The possible magnitudes of θ depend on the 

projectile energy, potential energy, and the impact parameter b. In this 

mechanism, a collision between two particles conserves total energy; we 

typically refer to the scattering as being elastic. The scattering angle is taken 

to range anywhere between zero and π radians, where zero radians correspond 

to absolutely no scattering, and π radians correspond to complete backward 

scattering. Most scattering experiments involve firing many particles at a 
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collection of targets, measuring the outgoing angles, and then comparing the 

results against a set of statistical predictions. For this reason, there is some 

additional terminology we need to develop beyond what we have been 

discussing for far in the simple two-body problem, terminology related to the 

concept of a cross-section. The concept of cross-section, as its name suggests, 

is that of effective area for collision. In aiming a beam of particles at a target 

which is much smaller than the beam, as in the Rutherford 

scattering experiment, the cross-section takes on a statistical nature. To 

understand the basic concept of a cross-section, we will start by considering a 

very simple model of scattering, where the potential experienced by the 

projectile is given by. 

 𝑈(𝑟) = {
0, 𝑟 > 𝑅
∞, 𝑟 < 𝑅

  (2.1) 

This type of scattering potential is known as hard sphere scattering and is 

illustrated in figure (2.1). Notice that the solid sphere has an overall cross-

sectional area of 

 𝜎 = 𝜋𝑅2 (2.2) 

There is a region of space, with cross-sectional area σ, that projectiles cannot 

pass through. If the incoming path of a projectile passes through this cross-

sectional area, it will be deflected off at some angle. For this reason, we define 

σ to be the scattering cross-section for this potential. The scattering cross-

section gives us an intuitive sense of how much area is blocked out by the 

target during a scattering event. To see how this notion is useful to us, let’s 

imagine that instead of one target, we have devised an experiment which in 

fact contains many targets, as shown in figure (2.2).  

 

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html#c1
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Figure 2.2: A sheet containing many hard sphere targets, each with a scattering cross-

section σ. 

Figure (2.2) shows a “head-on view” as seen by an incoming projectile. If we 

describe the surface density of targets by the quantity 𝑛𝑡𝑎𝑟 , then the total 

number of targets in the sheet is given by 𝐴𝑛𝑡𝑎𝑟  , where A is the total area of 

the target assembly. If we now imagine that our target assembly contains many 

targets, while still remaining dilute, and that we are interested in describing a 

large number of scattering events, we can apply statistical considerations 

when discussing the number of deflections that occur. For any given projectile 

that is fired at the target assembly, the probability that it will hit one of the 

spheres and scatter is given by the total cross-sectional area of all the targets, 

divided by the total area of the assembly, so that. 

 𝑃 =
𝐴𝑛tar 𝜎

𝐴
= 𝑛tar 𝜎 (2.3) 

If we now imagine that the number of incident projectiles, we fire at the sheet 

is Ninc, then statistically speaking, the number of scattered particles, Nsc, 

should be given by 

 𝑁sc = 𝑃𝑁inc = 𝑁inc  𝑛tar  𝜎 (2.4) 

𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝜎 
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To derive an expression of the cross-section in terms of the experimental 

parameters, let’s return to our single hard sphere target, and consider the 

motion of a single projectile which strikes it with impact parameter b. This is 

indicated in figure (2.3). 

 

Figure 2.3: The motion of a projectile which strikes a hard sphere with impact 

parameter b. 

In this simple model, it is relatively straight-forward to determine the 

scattering angle as a function of the impact parameter. The trick is to make 

use of the fact that the angle of incidence on the surface of the sphere must be 

the same as the angle of reflection, with respect to the surface tangent of the 

sphere. This certainly seems “obvious” for scattering off of a hard surface, 

although we could in fact prove this claim if we wanted to, based on angular 

momentum and energy conservation. If we denote this angle as α (as is done 

in the figure), then some simple geometric reasoning and some trigonometry 

led us to the conclusion that. 

 𝑏 = 𝑅 sin𝛼 (2.5) 

𝑅 𝑏 

𝛼 

𝛼 
𝜃 

𝛼 
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This is due to the fact that various theorems in geometry about parallel lines 

tell us that all of the angles marked as α must in fact be the same. Further study 

of figure (2.3) also indicates that 

 𝜋 = 𝜃 + 2𝛼 (2.6) 

since these angles add up to a full 180 degrees. Combining these two results, 

we have 

 𝑏 = 𝑅 sin (
𝜋

2
−
𝜃

2
) = 𝑅 cos 

𝜃

2
⇒ 𝜃 = 2 arccos (

𝑏

𝑅
) (2.7) 

Notice that this expression becomes undefined when b > R, which makes 

physical sense in which there is no scattering. When we are interested in 

particles that scatter only within an infinitesimal range of angles, say dθ, what 

range of impact parameters, db, is necessary to achieve such a scattering? The 

result we have just derived tells us that if we want our projectile to scatter into 

an angle θ + dθ, it must have an impact parameter.  

 

 𝑏 + 𝑑𝑏 = 𝑅 cos (
𝜃

2
+
𝑑𝜃

2
) ≈ 𝑅 cos (

𝜃

2
) −

𝑅

2
sin (

𝜃

2
)  𝑑𝜃

= 𝑏 −
𝑅

2
sin (

𝜃

2
)  𝑑𝜃 

(2.8) 

Thus, we find that in order to increase the scattering angle by an amount dθ, 

we must increase the impact parameter by 𝑑𝑏 where, 𝑑𝑏 is 

 𝑑𝑏 = −
𝑅

2
sin (

𝜃

2
)  𝑑𝜃 (2.9) 

We can consider this quantity db as the amount of “infinitesimal cross-

section” which determines the area within which a particle’s path would need 

to pass for it to scatter into a range of angles dθ. Now it is possible to integrate 

this quantity over all possible outgoing angles. Before performing this 

integration, we need to admit the possibility of multiple projectiles coming 

along multiple paths and scattering off one target in a wide range of angles 
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from the central axis. This is illustrated in figure (2.4). In this case, the 

infinitesimal amount of scattering area is not db, but rather. 

 𝑑𝜎 = 2𝜋𝑏𝑑𝑏 (2.10) 

The extra factor of 2πb comes from the circumference around the central 

scattering axis. Integrating this expression over all angles, we find 

  ∫ 𝑑𝜎 = −𝜋𝑅2∫
0

𝜋
 sin (

𝜃

2
) cos (

𝜃

2
) 𝑑𝜃 = −𝜋𝑅2 (2.11) 

Aside from a minus sign, this is simply the total cross-section for scattering 

by the hard sphere. 

 

Figure 2.4 : The scattering of multiple projectiles off of a hard sphere, all with an 

impact parameter which lies between b and b + db. 

That is to say, the result for b as a function of the scattering angle θ did not 

depend on the angle around the central scattering axis φ. In three dimensions 

the impact parameter and the infinitesimal dσ are function of both angels θ 

and φ. The formed area corresponding these angles described by solid angle 

ⅆΩ and shown in figure (2.5). 

𝑏 

𝜃 

𝑑𝜎 = 2𝜋𝑏 𝑑𝑏 

𝑑Ω = 2𝜋 sin 𝜃  𝑑𝜃 

𝑧 
0 
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Figure 2.5: a.) The definition of an angle in two dimensions. b.) The definition of solid 

angle in three dimensions. 

 

 In two dimensions, the angular difference between two points on a circle can 

be defined as 

  Δ𝜃 =
𝑠

𝑟
 (2.12) 

where s is the arc length between the two points, and r is the radius of the 

circle. In three dimensions, we can similarly define the amount of solid angle 

corresponding to a patch of area on the surface of a sphere. Analogously to 

the two-dimensional case, the amount of solid angle is defined as 

 ΔΩ =
𝐴

𝑟2
 (2.13) 

The unit of solid angle is the steradian, as opposed to the radian which 

describes regular angles. Notice that since the surface area of a sphere is 4πr2, 

the solid angle corresponding to all possible directions in three-dimensional 

space is given by 4π steradians. In particular, we will often be interested in 

knowing the amount of infinitesimal solid angle surrounding a set of angles θ 

and φ which describe a spherical coordinate system. The volume element is 

given by 

 𝑑𝑉 = 𝑟2 sin𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 (2.14) 

Length =s Area =A 

Δ𝜃 = 𝑠/𝑟 ΔΩ = 𝐴/𝑟2 
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so that the infinitesimal amount of area on the surface of a sphere with radius 

r is given by 

 𝑑𝐴 =
𝑑𝑉

𝑑𝑟
= 𝑟2 sin𝜃 𝑑𝜃 𝑑𝜙 (2.15) 

 

Thus, the infinitesimal amount of solid angle surrounding a given direction in 

spherical coordinates is given by 

 𝑑Ω =
𝑑𝐴

𝑟2
= sin𝜃 𝑑𝜃 𝑑𝜙 (2.16) 

Having introduced the idea of solid angle, we are now ready to define 

differential cross-section D(θ), which is illustrated in figure (2.6). 

 

Figure 2.6: The notion of a differential cross-section. 

 We again imagine that we have fired a sequence of projectiles at a large sheet 

full of many targets, with some density ntar. Instead of asking about the total 

cross-section for scattering, we can ask about the infinitesimal amount of 

cross-section dσ that is required for a particle to scatter off at some angle into 

a small amount of solid angle dΩ. By the same reasoning as before, if we think 

target 

𝑑Ω 

(𝜃, 𝜙) 
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in statistical terms, then the total number of particles scattered into this small 

region of solid angle should be 

 𝑁sc(𝑑Ω) = 𝑁inc  𝑛tar  𝑑𝜎(𝑑Ω) (2.17) 

The total cross-section can then be found by integrating. 

  𝜎 = ∫ 𝑑𝜎 = ∫
𝑑𝜎

𝑑Ω
𝑑Ω (2.18) 

The quantity appearing in the integral, 

 𝐷(𝜃) =
𝑑𝜎

𝑑Ω
 (2.19) 

The results of scattering experiments cannot determine the initial impact 

parameter of a given projectile, but they can detect the number of particles 

being scattered into a certain region of solid angle with great accuracy. The 

differential cross-section can be determined from experimental measurements 

on the number of incident particles, the density of targets in our material, and 

the number of particles scattered off at some angle. In many areas of physics, 

a given model describing the interactions between particles will result in a 

theoretical prediction for the differential cross-section in a given experiment. 

This prediction can then be tested against experiments, in order to verify the 

given model. In this case, assuming that we have found the function b (θ), the 

amount of infinitesimal scattering cross-section will again be given by 

 𝑑𝜎 = 2𝜋 𝑏 𝑑𝑏 (2.20) 

In this case, the total amount of solid angle, integrated over all values of φ, is 

given by 

 

 𝑑Ω = 2𝜋 sin𝜃 𝑑𝜃 (2.21) 

Dividing these two expressions, we have 

 𝐷(𝜃) =
𝑑𝜎

𝑑Ω
=

𝑏

sin𝜃
|
𝑑𝑏

𝑑𝜃
| (2.22) 
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where we have added the absolute value signs to ensure that the result is 

positive. Notice that for the case of hard sphere scattering, this gives. 

 𝐷(𝜃) =
𝑅2

4
 

(2.23) 

which is completely independent of angle (as we would expect for a sphere). 

Integrated over all solid angles, we find. 

 𝜎 =
𝑅2

4
∫ 𝑑Ω =

𝑅2

4
∫ sin𝜃 𝑑𝜃 𝑑𝜙 = 𝜋𝑅2 

(2.24) 

 

2.3 Coulomb Scattering  

       In the following section, we will be concerned by the Coulomb scattering 

which is sometimes called Rutherford scattering. In this type of scattering, 

both projectile of atomic number Z1 and target Z2 are electrically charged. The 

projectile reaches the closest approach of the target before it deflects away 

due to the electrical potential of the target. It can be shown in figure (2.7) the 

projectile has the chance to get closer to the target then it starts bending away 

after it suffers an electrical potential from the target making an angle θ 

measured from the initial direction. The conservation laws of momentum are 

applicable in this mechanism. [6] 
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Figure 2.7 : A schematic diagram represents Coulomb scattering. 

 

  

 |𝑝𝑖⃗⃗⃗  | = |𝑝𝑓⃗⃗⃗⃗ | = 𝑝 (2.25) 

 

 

 sin (
𝜃

2
) =

1
2
Δ𝑝

𝑝
=
Δ𝑝

2𝑝
 

(2.26) 

 

𝜃 

𝜃 
𝑟 

𝑚 

𝑍1𝑒 

𝑍2𝑒 

𝑣0 

𝑏 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑟 

z′ 𝑎𝑥𝑖𝑠  

𝜙 = 0 

 
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝜙 

 
 𝜙 
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 Δ𝑝 = 2𝑝 sin (
𝜃

2
) (2.27) 

 

 |Δ𝑝 | = Δ𝑝 (2.28) 

 

The projectile suffers a change in the direction resulting from Coulomb 

repulsion force from target and directed in z axis which known as:  

 𝐹 =
1

4𝜋𝜀0

𝑍1𝑍2𝑒
2

𝑟2
 
𝑟 

𝑟
 (2.29) 

where e is the electron charge. The force can be written from the second law 

of Newton.  

 
 𝐹 =

𝑑𝑝 

𝑑𝑡
⟹ Δ𝑝 = ∫ 𝐹 𝑑𝑡 

(2.30) 

 Δ𝑝 = ∫ 𝐹 𝑑𝑡 ⟹ Δ𝑝 = ∫ 𝐹 cos𝜙 𝑑𝑡 (2.31) 

 Δ𝑝 =
𝑍1𝑍2𝑒

2

4𝜋𝜀0
∫
1

𝑟2
cos𝜙 𝑑𝑡 (2.32) 

In this integral there are two varying parameters which made it difficult to 

calculate so we will use the laws of conservations of angular momentum 

because the scattering is elastic. Since the angular momentum L is  

 𝐿 = |�⃗� | = 𝑚𝑟2
𝑑𝜙

𝑑𝑡
 (2.33) 

In the initial condition, there is no angular velocity it is linear so the angular 

momentum can be written as  

𝐿 = 𝑚𝑣0𝑏   (2.34) 

Since the angular momentum is conserved 

 𝑚𝑟2
𝑑𝜙

𝑑𝑡
= 𝑚𝑣0𝑏 ⟹

𝑑𝑡

𝑟2
=
𝑑𝜙

𝑣0𝑏
 (2.35) 

Thus, the change of momentum is 



 

(32) 
 

 

Δ𝑝 =
𝑍1𝑍2𝑒

2

4𝜋𝜀0
∫
𝑑𝑡

𝑟2
cos 𝜙 =

𝑍1𝑍2𝑒
2

4𝜋𝜀0
= ∫

𝑑𝜙

𝑣0𝑏
cos𝜙

=
𝑍1𝑍2𝑒

2

4𝜋𝜀0

1

𝑣0𝑏
∫
𝜙1

𝜙2
 cos𝜙 𝑑𝜙 

 

(2.36) 

The limits for integration are defined by   

 

𝜙1 + 𝜙2 + 𝜃 = 𝜋   &  𝜙1 = −𝜙2  

So  𝜙1 = −
1

2
(𝜋 − 𝜃) & 𝜙2 =

1

2
(𝜋 − 𝜃) 

(2.37) 

The negative and positive φ are equal in magnitude. the solution to these 

equations is 

 Δ𝑝 =
𝑍1𝑍2𝑒

2

4𝜋𝜀0

1

𝑣0𝑏
 ∫ 𝑐𝑜𝑠𝜙 𝑑𝜙

𝜙2

𝜙1

    (2.38) 

=  
𝑍1𝑍2𝑒

2

4𝜋𝜀0

1

𝑣0𝑏
 (𝑠𝑖𝑛𝜙2 − 𝑠𝑖𝑛𝜙1) 

=  
𝑍1𝑍2𝑒

2

4𝜋𝜀0

1

𝑣0𝑏
 2 sin (

𝜋 − 𝜃

2
) 

=  
𝑍1𝑍2𝑒

2

4𝜋𝜀0

2

𝑣0𝑏
 𝑐𝑜𝑠 (

𝜃

2
) 

Apply the conservation of momentum then combine two equations 2.27 and 

2.38 

 Δ𝑝 = 2𝑝sin (𝜃/2) =
𝑍1𝑍2𝑒

2

4𝜋𝜀0

2

𝑣0𝑏
𝑐𝑜𝑠 (

𝜃

2
) (2.39) 

This equation gives the relation between the impact parameter and the 

scattering angle. Then we need to get 
𝑑𝑏

𝑑𝜃
 

 𝑏 =
𝑍1𝑍2e

2

4𝜋𝜀0

1

𝑝𝑣0

1

𝑡𝑎𝑛 ( 
𝜃
2)

 (2.40) 
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Let 𝑐 =
𝑧1 𝑧2 𝑒

2

4 𝜋 𝜀0 𝑝 𝑣0
 

So       𝑏 = 𝑐 𝑐𝑜𝑡 (
𝜃

2
) 

𝑑𝑏 = −𝑐 𝑐𝑠𝑐2 (
𝜃

2
)
𝑑𝜃

2
 

|
𝑑𝑏

𝑑𝜃
| =  

𝑐 𝑐𝑠𝑐2 (
𝜃
2)

2
 

 

|
𝑑𝑏

𝑑𝜃
| =  

𝑐 

2 𝑠𝑖𝑛2 (
𝜃
2)

 

From the equation of differential cross-section (2.22) 

𝑑𝜎

𝑑Ω
= 

𝑏

sin(𝜃)
 |
𝑑𝑏

𝑑𝜃
|  

𝑑𝜎

𝑑Ω
= 

𝑏

sin(𝜃)
 

𝑐 

2 𝑠𝑖𝑛2 (
𝜃
2)

 

𝑑𝜎

𝑑Ω
= 

𝑏

2 𝑠𝑖𝑛 (
𝜃
2)
 𝑐𝑜𝑠 (

𝜃
2)
 

𝑐 

2 𝑠𝑖𝑛2 (
𝜃
2)

 

Substitute with b and c to get the final equation.  

 
𝑑𝜎

𝑑Ω
=  

𝑧1𝑧2 𝑒
4

64 𝜋2 𝜀0
2 𝑚2 𝑣4 𝑠𝑖𝑛4 (

𝜃
2)
  (2.41) 

This equation is called the Rutherford scattering formula. This formula agrees 

with experimental data for scattering alpha particles off gold nucleus up to 

27.5 MeV as shown in figure (2.8).[6] 
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Figure 2.8: Limitations of Rutherford formula. 

For higher energy other theoretical techniques will be applied such as 

quantum theory of scattering and will be explained in detail in the following 

section. 

 

2.4 Quantum Scattering Theory  

 

    In the quantum theory of scattering[7], we imagine an incident particle 

associated by a plane wave, traveling in the z direction, which encounters a 

scattering potential, producing an outgoing spherical wave as shown in figure 

(2.9). That is, we look for solutions to the Schrödinger equation of the generic 

form. 
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 𝜓(𝑟, 𝜃) ≈ 𝐴 {𝑒𝑖𝑘𝑧 + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
} ,     for large r  (2.42) 

The spherical wave carries a factor of  
1

𝑟
 because this portion of |𝜓|2 must go 

like to conserve probability and the scattering amplitude 𝑓(𝜃). The wave 

number k is related to the energy of the incident particles in the usual way 

 𝑘 ≡
√2𝑚𝐸

ℏ
 

(2.43) 

 

Figure 2.9: Scattering of waves; an incoming plane wave generates a spherical wave. 

The whole problem is to determine the scattering amplitude; it indicates the 

probability of scattering in each direction θ, and hence is related to the 

differential cross-section. Indeed, the probability that the incident particle, 

traveling at speed 𝑣, passes through the infinitesimal area 𝑑𝜎, in time 𝑑𝑡, is 

(see figure 2.10) 

 𝑑𝑃 = |𝜓incident |
2𝑑𝑉 = |𝐴|2(𝑣𝑑𝑡)𝑑𝜎. (2.44) 

𝑧 

𝑒𝑖𝑘𝑟 
𝑒𝑖𝑘𝑧 

𝜃 
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Figure 2.10: The volume dV of incident beam that passes through area 𝑑𝜎 in 

time dt. 

But this is equal to the probability that the particle scatters into the 

corresponding solid angle: 

 𝑑𝑃 = |𝜓scattered |
2𝑑𝑉 =

|𝐴|2|𝑓|2

𝑟2
(𝑣𝑑𝑡)𝑟2𝑑Ω 

(2.45) 

from which it follows that 𝑑𝜎 =  |𝑓|2𝑑Ω 

 𝐷(𝜃) =
𝑑𝜎

𝑑Ω
= |𝑓(𝜃)|2 (2.46) 

Evidently the differential cross-section which is the quantity of interest to the 

experimentalist is equal to the absolute square of the scattering amplitude. It 

is obtained by solving the Schrödinger equation. There are different 

mathematical analyses for this solution to obtain the scattering amplitude 

𝑓(𝜃). First, the partial wave analysis using the phase shift. Second, the Born 

approximation.   

(a) Partial Wave Analysis 

In partial wave analysis, the wave function 𝜓(r, 𝜃) takes the form 

 𝜓(𝑟, 𝜃) ≈ 𝐴 {𝑒𝑖𝑘𝑧 + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
} (2.47) 

and the scattering amplitude is obtained in terms of partial wave amplitudes 

as 

𝑣 

𝑣𝑑𝑡 

𝑑𝜎 
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 𝑓(𝜃) = ∑ℓ=0
∞  (2ℓ + 1)𝑎ℓ𝑃ℓ(cos 𝜃) (2.48) 

where 𝑃ℓ is the ℓ-state Legendre polynomial and 𝑎ℓ is the partial wave 

amplitude. The differential cross-section 𝐷(𝜃) is. 

 
𝐷(𝜃) = |𝑓(𝜃)|2 

𝐷(𝜃) = ∑ℓ  ∑ℓ′  (2ℓ + 1)(2ℓ
′ + 1)𝑎ℓ

∗𝑎ℓ′𝑃ℓ(cos 𝜃)𝑃ℓ′(cos 𝜃) 

(2.49) 

and the total cross-section is 

 𝜎 = 4𝜋∑ℓ=0
∞  (2ℓ + 1)|𝑎ℓ|

2 (2.50) 

In the phase shift analysis, the scattering amplitude of the reflected wave is 

same as that of the incident wave|𝐵| = |𝐴|, due to conservation of probability. 

But they have not the same phase. The phase shift 𝛿 between the incident and 

scattered waves depending on magnitude of potential. In addition, it depends 

on the nature of the scattering center. The solution of Schrödinger equation 

takes the form  

 
𝜓(ℓ) ≈ 𝐴

(2ℓ + 1)

2𝑖𝑘𝑟
[𝑒𝑖(𝑘𝑟+2𝛿ℓ) − (−1)ℓ𝑒−𝑖𝑘𝑟]𝑃ℓ(co𝑠 𝜃)  

at (𝑉(𝑟) ≠ 0) 

(2.51) 

The first term in bracket represents the outgoing wave with the phase shift 𝛿𝑙. 

The combination of the two methods of scattering analysis gives the partial 

wave amplitude 𝑎ℓ with the phase shift 𝛿𝑙 as  

 𝑎ℓ =
1

2𝑖𝑘
(𝑒2𝑖𝛿ℓ − 1) =

1

𝑘
𝑒𝑖𝛿ℓsin (𝛿ℓ) 

(2.52) 

and the scattering amplitude 𝑓(𝜃) becomes 

 𝑓(𝜃) =
1

𝑘
∑  

∞

ℓ=0

  (2ℓ + 1)𝑒𝑖𝛿ℓsin (𝛿ℓ)𝑃ℓ(cos 𝜃) (2.53) 

The scattering cross-section becomes 
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 𝜎 =
4𝜋

𝑘2
∑ 

∞

ℓ=0

  (2ℓ + 1)sin2 (𝛿ℓ) (2.54) 

 where 𝑙 = 0,1, 2, …. 

(b) The Born Approximation 

The Born approximation [7] is a mathematical treatment to solve Schrödinger 

equation at points of scattering center where time independent is  

 −
ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 = 𝐸𝜓 

(2.55) 

The previous equation can be written as  

 (∇2 + 𝑘2)𝜓 = 𝑄 (2.56) 

where  

 𝑘 ≡
√2𝑚𝐸

ℏ
  and  𝑄 ≡

2𝑚

ℏ2
𝑉𝜓 

(2.57) 

This has superficial appearance of the Helmholtz equation; note, however, that 

the inhomogeneous term (𝑄) itself depends on 𝜓. Suppose we could find a 

function G(r) that solves the Helmholtz equation with a delta function ‘source’ 

 (∇2 + 𝑘2)𝐺(𝐫) = 𝛿3(𝐫) (2.58) 

then we could express 𝜓 as an integral: 

 

 𝜓(𝐫) = ∫  𝐺(𝐫 − 𝐫0)𝑄(𝐫0)𝑑
3𝐫0 (2.59) 

For it easy to show that this satisfies Schrodinger equation 

 

(∇2 + 𝑘2)𝜓(𝐫) = ∫  [(∇2 + 𝑘2)𝐺(𝐫 − 𝐫0)]𝑄(𝐫0)𝑑
3𝐫0 

= ∫  𝛿3(𝐫 − 𝐫0)𝑄(𝐫0)𝑑
3𝐫0 = 𝑄(𝐫) 

(2.60) 
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𝐺(r) is called the green function for the Helmholtz equation. (In general, the 

green function for linear differential equations represents the response to delta 

function source. The solution of Green function is analysed and given as 

 𝐺(𝐫) =
𝑖

8𝜋2𝑟
[(𝑖𝜋𝑒𝑖𝑘𝑟) − (−𝑖𝜋𝑒𝑖𝑘𝑟)] = −

𝑒𝑖𝑘𝑟

4𝜋𝑟
 

(2.61) 

and general solution of schrodinger equation takes the form 

 𝜓(𝐫) = 𝜓0(𝐫) −
𝑚

2𝜋ℏ2
∫  
𝑒𝑖𝑘|𝐫−𝐫0|

|𝐫 − 𝐫0|
𝑉(𝐫0)𝜓(𝐫0)𝑑

3𝐫0 (2.62) 

where 𝜓0 satisfies the free-particle Schrödinger equation, 
 

 (∇2 + 𝑘2)𝜓0 = 0 (2.63) 

 It is looks like an explicit solution to the Schrödinger equation (for any 

potential) which is too good to be true.  

In the case of scattering, we want. 

 𝜓0(𝐫) = 𝐴𝑒
𝑖𝑘𝑧 (2.64) 

representing an incident plane wave. For large r, then,  

 𝜓(𝐫) ≈ 𝐴𝑒𝑖𝑘𝑧 −
𝑚

2𝜋ℏ2
𝑒𝑖𝑘𝑟

𝑟
∫  𝑒−𝑖𝐤⋅𝐫0  𝑉(𝐫0) 𝜓(𝐫0) 𝑑

3𝐫0. (2.65) 

This is in the standard from (equation 2.47), and we can read off the scattering 

amplitude  

 𝑓(𝜃, 𝜙) = −
𝑚

2𝜋ℏ2𝐴
∫  𝑒−𝑖𝐤⋅𝐫0  𝑉(𝐫0) 𝜓(𝐫0) 𝑑

3𝐫0 (2.66) 

 This is exact.  Now we invoke the Born approximation: Suppose the incoming 

plane wave is not substantially altered by the potential; then it makes sense to 

use 

 𝜓(𝐫0) ≈ 𝜓0(𝐫0) = 𝐴 𝑒
𝑖𝑘𝑧0 = 𝐴 𝑒𝑖𝐤

′⋅𝐫0  (2.67) 
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where 𝐤′ ≡ 𝑘�̂� inside the integral. (This would be the exact wave function, if 

V were zero; it is essentially a weak potential approximation. In the Born 

approximation, then, 

 𝑓(𝜃, 𝜙) ≈ −
𝑚

2𝜋ℏ2
∫  𝑒𝑖(𝐤

′−𝐤)⋅𝐫0  𝑉(𝐫0) 𝑑
3𝐫0. (2.68) 

The two vectors k and k' are the wave numbers of the incident and outgoing 

waves respectively and are shoen in figure (2.11). 

 

Figure 2.11: Two wave vectors in the Born approximation: k’ points in the incident 

direction, k in the scattered direction. 

For low energy (long wavelength) scattering, the exponential factor is 

essentially constant over the scattering region, and the Born approximation 

simplifies to  

 𝑓(𝜃, 𝜙) ≈ −
𝑚

2𝜋ℏ2
∫  𝑉(𝐫) 𝑑3𝐫            (low energy)  (2.69) 

For spherical symmetrical potential, 𝑉(𝐫) = 𝑉(𝑟) but not nessairly at low 

energy and the Born approximation again reduces to a simpler form,  

 𝜅 ≡ 𝑘′ − 𝑘 (2.70) 

 And let the polar axis for the 𝐫0 integral lie along 𝜅, so that  

𝑘 = 𝑘𝑟Ƹ  

𝑘′ = 𝑘𝑟Ƹ  

𝜅 = 𝑘′ − 𝑘 

𝜃 
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 (𝐤′ − 𝐤) ⋅ 𝐫0 = 𝜅 𝑟0 cos𝜃0. (2.71) 

Then  

 𝑓(𝜃) ≈ −
𝑚

2𝜋ℏ2
∫  𝑒𝑖𝜅𝑟0cos 𝜃0  𝑉(𝑟0) 𝑟0

2 sin𝜃0 𝑑𝑟0 𝑑𝜃0 𝑑𝜙0. (2.72) 

The 𝜙0 integral is trivial (2𝜋), and the 𝜃0 integral is one. Dropping the 

subscript on r, we are left with 

𝑓(𝜃) ≈ −
2𝑚

ℏ2𝜅
∫  
∞

0

𝑟 𝑉(𝑟) sin(𝜅𝑟) 𝑑𝑟     (spherical symmetry).  (2.73) 

The angular ⅆepenⅆence of 𝑓(𝜃) is carrieⅆ by 𝜅; as shown in figure 2.11.  

 𝜅 = 2𝑘 sin (
𝜃

2
) .  (2.74) 

An application to Born approximation is Rutherford scattering between two 

charged points q1 and q2 at Couomb's potential. The Born approximation gives  

 𝑓(𝜃) ≈ −
2𝑚𝛽

ℏ2𝜅
∫  
∞

0

𝑒−𝜇𝑟  sin(𝜅𝑟) 𝑑𝑟 = −
2𝑚𝛽

ℏ2(𝜇2 + 𝜅2)
 (2.75) 

where 𝛽 and 𝜇 are constants. If we put 𝛽 = 𝑞1𝑞2/4𝜋𝜖0  anⅆ  𝜇 = 0  the 

scattering amlitude is 

 𝑓(𝜃) ≈ −
2𝑚𝑞1𝑞2
4𝜋𝜖0ℏ

2𝜅2
 (2.76) 

or (using Equations 2.74 and 2.57): 

 𝑓(𝜃) ≈ −
𝑞1𝑞2

16𝜋𝜖0𝐸 sin
2 (
𝜃
2)

 (2.77) 

 

the differential creoss-section is the square of this 
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𝑑𝜎

𝑑Ω
= [

𝑞1𝑞2

16𝜋𝜖0𝐸 sin
2 (
𝜃
2)
]

2

 (2.78) 

which is precisely the Rutherford formula. It happens that for Coulomb 

potential classical mechanics, the Born approximation, and quantum field 

theory all yield the same result. [7] 

 

2.5 Quantum Electro-Dynamics  

In this section, we will investigate the scattering process in terms of quantum 

electrodynamics QED.  This theory describes the electromagnetic interactions 

between leptons (like electron) and hadrons (like proton, neutron, muon). The 

following are the technical issues that must be addressed in any estimation of 

the cross-sections in terms of their transition rates: First, is dealing with a 

many-particle situation. Second, is handling a relativistic problem. We 

calculate the one-particle wave equations for free leptons (or quarks) and then 

investigate the scattering of one particle by another. At first glance, it is 

unexpected that single-particle wave equations may be used to explain 

interactions in which particles can be created and annihilated. QED theory is 

applied in terms of Feynman diagrams, using Golden rules where the 

exchange boson is photon (γ) with energy q. In the following sections, we will 

explain the mathematical tools used in QED in terms of relativistic mechanics. 

2.6 Lorentz Covariance and Four-Vector Notation 

The fact that the basic laws have the same form in all Lorentz frames, that is, 

reference frames with uniform relative velocity, is a cornerstone of modern 

physics. Lorentz covariance describes the fundamental equations. The theory 

of special relativity is founded on the assumption that the velocity of light, c, 
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is constant in all Lorentz frames. A Lorentz transformation connects the 

coordinates of two such frames. c2t2 - x2 is the basic invariant. A four-vector 

is defined as any collection of four values that transform as (ct, x) under 

Lorentz transformations. We use the abbreviation. 

 (𝑐𝑡, 𝐱) ≡ (𝑥0, 𝑥1, 𝑥2, 𝑥3) ≡ 𝑥𝜇  (2.79) 

 According to special relativity theory, the total energy E and momentum p of 

an isolated system transform as components of a four-vector. 

 (
𝐸

𝑐
, 𝐩) ≡ (𝑝0, 𝑝1, 𝑝2, 𝑝3) = 𝑝𝜇  (2.80) 

with the basic invariant (E2/c2) - p2. The simplest system is a free particle, for 

which 

 
𝐸2

𝑐2
− 𝐩2 = 𝑚2𝑐2 

(2.81) 

 where m is the particle's rest mass.We will now return to the usage of natural 

units with c = 1. We may apply the scalar product of two four-vectors in three-

dimensional space, just as we can in two-dimensional space. Aµ = (A0, A) and 

Bµ = (B0, B) 

 𝐴 ⋅ 𝐵 ≡ 𝐴0𝐵0 − 𝐀 ⋅ 𝐁 (2.82) 

which is left invariant under Lorentz transformations. Due to the minus sign, 

it is convenient to introduce a new type of four-vector, Aµ = (A0, - A), so that 

the scalar product is  

 𝐴 ⋅ 𝐵 = 𝐴𝜇𝐵
𝜇 = 𝐴𝜇𝐵𝜇 = 𝑔𝜇𝜈𝐴

𝜇𝐵𝜈 = 𝑔𝜇𝜈𝐴𝜇𝐵𝜈  (2.83) 

Here, we have introduced the (metric) tensor gµν which is defined by g00 = 1, 

g11 = g22 = g33 = - 1, other components = 0 
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 𝑔𝜇𝜈 = (

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) (2.84) 

Upper (lower) index vectors are called contravariant (covariant) vectors. The 

rule for forming Lorentz invariants is to make the upper indices balance the 

lower indices. If an equation is Lorentz covariant, we must ensure that all 

unrepeated indices (upper and lower separately) balance on either side of the 

equation, and that all repeated indices appear once as an upper and once as a 

lower index. the following are examples of scalar products of two four vectors 

positions x and momentum p are  

 𝑝𝜇𝑥𝐴 ≡ 𝑝 ⋅ 𝑥 = 𝐸𝑡 − 𝐩 ⋅ 𝐱 (2.85) 

And also, for two momentum vectors  

 𝑃𝜇𝑃𝜇 ≡ 𝑝 ⋅ 𝑝 = 𝑝
2 = 𝐸2 − 𝑝2 (2.86) 

These quantities are Lorentz invariants.  For a free particle, we have p2 = m2. 

We say that the particle is on its mass shell. The collision of two particles, 

each of mass M, is viewed in a Lorentz frame in which they hit head-on with 

momenta equal in magnitude but opposite in direction. We speak of this as the 

"center-of-mass" frame (though the name "center-of-momentum" would be 

more appropriate). 

 The total energy of the system is Ecm 

 𝑠 ≡ (𝑝1 + 𝑝2)𝜇(𝑝1 + 𝑝2)
𝜇 ≡ (𝑝1 + 𝑝2)

2 = 𝐸𝑐𝑚
2  (2.87) 

If the collision is viewed in the "laboratory" frame where one of the particles 

is at rest, then show, by evaluating the invariant s, that the other has energy.  
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 𝐸𝑙𝑎𝑏 =
𝐸𝑐𝑚
2

2𝑀
−𝑀 

(2.88) 

This study shows that colliding-beam accelerators have a huge advantage 

compared to fixed-target accelerators in terms of reaching a given total center 

of mass energy √𝑠. List some of the benefits of fixed-target accelerators. It is 

worth noting that the space-like components of Aµ and Aµ are A and - A, 

respectively. The exception is 

 ∂µ = (
∂

∂𝑡
 , −∇)        anⅆ       ∂µ = (

∂

∂𝑡
 , ∇) (2.89) 

which can be shown to transform like xµ = (t, x) and xµ= (t, -x). respectively. 

Thus. the covariant form of 𝐸 → 𝑖ℎ
∂

∂𝑡
,  𝐩 → −𝑖ℏ∇ is  

 𝑝𝜇 → 𝑖 ∂𝜇  (2.90) 

From 𝜕𝜇 and 𝜕𝜇  we can form the invariant (D'Alembertian) operator 

 ⧠2 ≡ ∂𝜇 ∂
𝜇  (2.91) 

In classical quantum mechanics Schrödinger equations can be modified in 

relativistic which is known as Klein-Gordon equation. 

2.7  The Klein-Gordon Equation 

Wave equation violates Lorentz covariance and is not suitable for a particle 

moves in a relativistic motion. Starting from the relativistic energy-

momentum relation equation. (2.81) 

 𝐸2 = 𝑝2 +𝑚2 (2.92) 

Making the operator substitutions 𝐸 → 𝑖ℎ
∂

∂𝑡
,  𝐩 → −𝑖ℏ∇ into Schrodinger 

equation, we obtain 
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 −
∂2𝜙

∂𝑡2
+ ∇2𝜙 = 𝑚2𝜙 

(2.93) 

It is known as the Klein-Gordon equation (but might be expressed more 

precisely. Known as the relativistic Schrodinger equation). The complex 

conjugate equation and the Klein-Gordon equation are multiplied by - iφ and 

- iφ*, respectively, then we get.  

 

∂

∂𝑡
[𝑖 (𝜙∗

∂𝜙

∂𝑡
− 𝜙

∂𝜙∗

∂𝑡
)]

⏟            
𝜌

+ ∇ ⋅ [−𝑖(𝜙∗∇𝜙 − 𝜙∇𝜙∗)]⏟            
𝐣

= 0 (2.94) 

When comparing with the variables in square brackets to the equation of 

continuity equation (2.95) where 𝜌 is the probability density and j is the flux 

density 

 
∂𝜌

∂𝑡
+ ∇ ⋅ j = 0 (2.95) 

The probability and flux densities can be identified. For instance, consider a 

free particle with energy E and momentum p that is characterized by the Klein-

Gordon solution.  

 𝜙 = 𝑁𝑒𝑖𝐩⋅𝑥−i𝐸𝑡  (2.96) 

We find from equation (2.94) that the probability density 𝜌 and the current 

density j are given as 

 𝜌 = 𝑖(−2𝑖𝐸)|𝑁|2 = 2𝐸|𝑁|2 (2.97) 

 j = −𝑖(2𝑖p)|𝑁|2 = 2p|𝑁|2 (2.98) 

We can observe that the probability density grows in proportion to E, the 

particle's relativistic energy.  The Klein-Gordon equation yields when the 

D'Alembertian operator equation (2.91) is used. 



 

(47) 
 

 (⧠2 +𝑚2)𝜙 = 0 (2.99) 

Moreover, the probability and the flux densities form a four-vector. 

 𝑗𝜇 = (𝜌, 𝐣) = 𝑖(𝜙∗ ∂𝜇𝜙 − 𝜙∂𝜇𝜙∗) (2.100) 

which satisfies the (covariant) continuity relation: 

 ∂𝜇j
𝜇 = 0 (2.101) 

Taking the free particle solution 

 𝜙 = 𝑁𝑒−𝑖𝐩⋅𝑥  (2.102) 

we have   

 𝑗𝜇 = 2𝑝𝜇|𝑁|2 (2.103) 

 We noted that the probability density 𝜌 is the time-like component of a four-

vector; 𝜌 is proportional to E. This result may be anticipated since under a 

Lorentz boost of velocity v, a volume element suffers a Lorentz contraction           

𝑑3𝑥 → 𝑑3𝑥  √1 − 𝑣2 ; and so, to keep ρ d3x invariant, we require 𝜌 to 

transform as the time-like component of a four-vector 𝜌 → 𝜌 √1 − 𝑣2 . To 

obtain the energy eigenvalues of the Klein-Gordon equation must substitute 

of (2.102) into (2.99). 

 𝐸 = ±(p2 +𝑚2)
1
2 

(2.104) 

As a result, we have negative energy solutions in addition to acceptable E > 0 

options. This appears to be an unavoidable trouble at first glance, because 

transitions to lower and lower (more negative) energies might occur. Another 

problem is that the E < 0 solutions have a negative probability density from 

equation (2.97). To summarize, the problems are 𝐸 < 0 solutions with 𝜌 < 0 
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 This problem cannot be simply ignored. We cannot simply discard the 

negative energy solutions as we have to work with a complete set of states, 

and this set inevitably includes the unwanted states.[2] 

2.8 Dirac Equation 

       To avoid the negative energy problems, Dirac proposed a relativistic wave 

equation linear in ∂/∂t and ∇. He was successful in solving the problem of the 

negative probability density, and the equation also described spin -1/2 

particles, which was an unexpected bonus. However, E < 0 solutions did arise, 

as seen in figure (2.12) energy spectrum for a free Dirac electron. Dirac 

avoided negative energy solutions by employing the exclusion principle. He 

proposed that the vacuum is an endless sea of E < 0 electrons, and that all 

negative energy states are inhabited. The exclusion principle now prevents 

positive energy electrons from collapsing into lower (negative) energy levels. 

However, a "hole" in the sea may be created by exciting an electron from a 

negative energy (- E) state to a positive energy (E') state, as shown. The lack 

of a charge - e and energy - E electron is interpreted as the existence of a 

charge +e and energy +E antiparticle (a positron). As a result of this excitation, 

a pair of particles are produced. 

 e−(𝐸′) + e+(𝐸) (2.105) 
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Figure 2.12: Energy level spectrum for the electron. 

Dirac's picture of the vacuum has all the negative 

energy states occupied. It shows two states per level to 

account for the two spin states of the electron. 

 

It obviously demands energy  E + E' ≥ 2m (see diagram). The Dirac equation 

was thought to be only valid relativistic wave equation until 1934. Pauli and 

Weisskopf reintroduced the Klein-Gordon equation in 1934 by introducing the 

charge -e into jµ and interpreting it as the electron's charge-current density. 

 𝑗𝜇 = −𝑖𝑒(𝜙∗ ∂𝜇𝜙 − 𝜙∂𝜇𝜙∗) (2.106) 

Now that ρ = j0 reflects a charge density rather than a probability density, the 

fact that it can be negative is no longer an issue. In certain ways, as we will 

see later, the E < 0 solutions can thus be considered as E > 0 solutions for 

particles of a reverse charge (antiparticles). Unlike "hole theory," this 

interpretation applies to bosons as well as fermions. The Dirac Sea cannot be 

filled with bosons because there is no exclusion principle to stack the particles. 

To build the antiparticle concept and introduce Feynman diagrams, it is 

necessary to initially neglect the difficulties caused by electron spin. To begin, 

we extract the Feynman rules for "spinless" electrons and employ them to 

compute scattering amplitudes and cross-sections for interacting particles. 

Only then do we resort to the Dirac equation and the Feynman rules for the 

physically relevant situation of spin 1/2 electron electromagnetic 

interactions.[2] 
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2.9 The Dirac Equation and Spinors 

In this section we develop the appropriate wave functions for fundamental 

fermions and bosons. In covariant form, Dirac equation can be written as: 

 (𝑖𝛾0
𝜕

𝜕𝑡
+ 𝑖𝛾.⃗⃗  �⃗� − 𝑚)𝜓 = 0                    (𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0 (2.107) 

where we have introduced the coefficients γµ = (γ0, 𝛾 ) = (γ0, γ1, γ2, γ3), which 

must  be determined.  Dirac equation is simply four coupled differential  

equations, describing a wavefunction ψ with four components. To find gamma 

matrices γµ, µ = 0, 1, 2, 3, we first multiply the Dirac equation by  its conjugate 

equation: 

 𝜓† (−𝑖𝛾0
𝜕

𝜕𝑡
− 𝑖𝛾.⃗⃗  �⃗� − 𝑚) (𝑖𝛾0

𝜕

𝜕𝑡
+ 𝑖𝛾.⃗⃗  �⃗� − 𝑚)𝜓 = 0 (2.108) 

it is consistent with the Klein-Gordon equation, this leads to the following 

conditions on the γµ: 

(𝛾0)2 = 1,     (𝛾𝑖)
2
= −1,     𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 0  for 𝜇 ≠  𝜈  

with 𝑖 = 1,2,3        𝜇, 𝜈 = 0,1,2,3  

Equivalently in terms of anticommutation relations and the metric tensor 

equation (2.84): 

{𝛾𝜇 , 𝛾𝜈} = 𝛾𝜇 ,  𝛾𝜈 + 𝛾𝜈 ,  𝛾𝜇 = 2𝑔𝜇𝜈           𝜇, 𝜈 = 0,1,2,3  

The simplest solution for the γµ, that satisfies these anticommutation relations, 

are 4 × 4 unitary matrices. We will use the following representation for the γ 

matrices: 

 γ0 = (
I 0
0 −I

)                    γ𝑖 = ( 0 𝜎𝑖

−𝜎𝑖 0
) (2.109) 
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Where               I = (
1 0
0 1

)          and         −I = (
−1 0
0 −1

) 

where I denote a 2 × 2 identity matrix which described by unit diagonal 

matrices, 0 denotes a 2 × 2 null matrix, and the σi are the Pauli spin matrices: 

𝜎𝑥 = (
0 1
1 0

)                    𝜎𝑦 = (
0 −𝑖
𝑖 0

)              𝜎𝑧 = (
1 0
0 −1

) 

Let’s write out the gamma matrices in full: 

 𝛾0 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)           𝛾1 = (

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

) (2.110) 

𝛾2 = (

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

)              𝛾3 = (

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

) 

Please note, despite the µ superscript, the γµ are not four vectors. However, 

they do remain constant under Lorentz transformations. Finally let’s write out 

the Dirac Equation in full: 

 

(

 
 
 
 
 
 
𝑖
∂

∂𝑡
− 𝑚 0 𝑖

∂

∂𝑧
𝑖
∂

∂𝑥
+
∂

∂𝑦

0 𝑖
∂

∂𝑡
− 𝑚 𝑖

∂

∂x
−
∂

∂𝑦
−𝑖

∂

∂𝑧

−𝑖
∂

∂𝑧
−𝑖

∂

∂𝑥
−
∂

∂𝑦
−𝑖
∂

∂t
− 𝑚 0

−𝑖
∂

∂x
+
∂

∂𝑦
𝑖
∂

∂𝑧
0 −𝑖

∂

∂t
− 𝑚

)

 
 
 
 
 
 

(

 
 

𝜓1

𝜓2

𝜓3

𝜓4)

 
 
= (

0
0
0
0

) (2.111) 

This form will be used in further calculations in scattering research for 

electron-proton scattering. 
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2.10 Spinors 

The Dirac equation describes the behavior of spin -1/2 fermions in relativistic 

quantum field theory. For a free fermion the wavefunction is the product of a 

plane wave and a Dirac spinor, u(pµ): 

 𝜓(𝑥𝜇) = 𝑢(𝑝𝜇) 𝑒−𝑖𝑝⋅𝑥  (2.112) 

Substituting the fermion wavefunction, ψ, into the Dirac equation: 

 (𝛾𝜇𝑝𝜇 −𝑚) 𝑢(𝑝) = 0 (2.113) 

 

For a particle at rest, �⃗� = 0, we find the following equations: 

 
(𝑖𝛾0

∂

∂𝑡
− 𝑚)𝜓 = (𝛾0𝐸 −𝑚)𝜓 = 0            

 �̂�𝑢 = (
𝑚𝐈 0
0 −𝑚𝐈

) 𝑢 

(2.114) 

The solutions are four eigen spinors: 

 𝑢1 = (

1
0
0
0

)      𝑢2 = (

0
1
0
0

)      𝑢3 = (

0
0
1
0

)      𝑢4 = (

0
0
0
1

) (2.115) 

and the associated wavefunctions of the fermion is: 

 
𝜓1 = 𝑒−𝑖𝑚𝑡𝑢1                       𝜓2 = 𝑒−𝑖𝑚𝑡𝑢2        

  𝜓3 = 𝑒+𝑖𝑚𝑡𝑢3                          𝜓4 = 𝑒+𝑖𝑚𝑡𝑢4 

(2.116) 

Note that the spinors are, however, not four-vectors representation but they 

are 1 × 4 column matrices, with four possible states. We would expect only 

two spin states for a spin 1/2 fermion. The change of sign in the exponents of 

the plane waves in the states ψ3 and ψ4 describe two different spin states (↑ 
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and ↓) with negative energy E = −m. and explained with details in the 

following section.  

2.11  Spinors for Moving Particles 

To describe the negative energy states, Dirac postulated that an electron in a 

positive energy state is produced from the vacuum accompanied by a hole 

with negative energy. The hole corresponds to a physical antiparticle, the 

positron, with charge +e.  Another interpretation (Feynman-Stuckelberg) is 

that the E=−m solutions can either describe a negative energy particle which 

propagates backwards in time, or a positive energy antiparticle propagating 

forward in time: 

 𝑒−𝑖[(−𝐸)(−𝑡)−(−𝑝 )⋅(−𝑥 )] = 𝑒−𝑖[𝐸𝑡−𝑝 ⋅𝑥 ] (2.117) 

For a moving particle, �⃗� ≠ 0 the Dirac equation becomes [using equations 

(2.107) and (2.109)]: 

 (𝛾𝜇𝑝𝜇 −𝑚)(𝑢𝐴𝑢𝐵) = (
𝐸 −𝑚 −𝜎 ⋅ 𝑝 

𝜎 ⋅ 𝑝 −𝐸 −𝑚
)(
𝑢𝐴
𝑢𝐵
) = 0 (2.118) 

where uA and uB denote the 1 × 2 upper and lower components of u 

respectively. The equations for uA and uB are coupled: 

 𝑢𝐴 =
𝜎 ⋅ 𝑝 

𝐸 −𝑚
𝑢𝐵                   𝑢𝐵 =

𝜎 ⋅ 𝑝 

𝐸 +𝑚
𝑢𝐴 

(2.119) 

The solutions are obtained for u1 and u2 in which describe an electron of 

energy 𝐸 = +√𝑚2 + 𝑝2⃗⃗⃗⃗ , and momentum �⃗�  and the wave functions represent 

as 

 
𝜓1 = 𝑢1(𝑝𝜇)𝑒−𝑖𝑝⋅𝑥                       𝜓2 = 𝑢2(𝑝𝜇)𝑒−𝑖𝑝⋅𝑥 

 

(2.120) 
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  𝑢1 =

(

 

1
0

𝑝𝑧/(𝐸 + 𝑚)

(𝑝𝑥 + 𝑖𝑝𝑦)/(𝐸 + 𝑚))

          𝑢2 = (

0
1

(𝑝𝑥 − 𝑖𝑝𝑦)/(𝐸 + 𝑚)

−𝑝𝑧/(𝐸 + 𝑚)

) (2.121) 

 

 𝑢3 = (

−𝑝𝑧/(−𝐸 +𝑚)

(−𝑝𝑥 − 𝑖𝑝𝑦)/(−𝐸 +𝑚)

1
0

)    𝑢4 = (

(−𝑝𝑥 + 𝑖𝑝𝑦)/(−𝐸 +𝑚)

𝑝𝑧/(−𝐸 +𝑚)
0
1

) (2.122) 

 

The u3 and u4 of equation (2.122) describe a positron of energy 𝐸 =

−√𝑚2 + 𝑝2⃗⃗⃗⃗ , and momentum �⃗�  . It is usual to change the spinors u3 and u4 

into v2(p) ≡ u3(−p) and v1(p) ≡ u4(−p) to describe these positive energy 

antiparticle states, 𝐸 = +√𝑚2 + 𝑝2⃗⃗⃗⃗    

 

𝑣2(𝑝𝜇) ≡ 𝑢3(−𝑝𝜇) =

(

 
 
 

𝑝𝑧
𝐸 +𝑚

(𝑝𝑥 + 𝑖𝑝𝑦)

𝐸 +𝑚
1
0 )

 
 
 
  

 

𝜓3 = 𝑣2(𝑝𝜇) 𝑒−𝑖𝑝⋅𝑥 = 𝑢3(−𝑝𝜇) 𝑒𝑖(−𝑝)⋅𝑥 

 

(2.123) 

𝑣1(𝑝𝜇) ≡ 𝑢4(−𝑝𝜇) =

(

 
 
 

(𝑝𝑥 − 𝑖𝑝𝑦)

(𝐸 +𝑚)
𝑝𝑧

(𝐸 +𝑚)
0
1 )

 
 
 

  

𝜓4 = 𝑣1(𝑝𝜇) 𝑒−𝑖𝑝⋅𝑥 = 𝑢4(−𝑝𝜇) 𝑒𝑖(−𝑝)⋅𝑥 
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the u and ν are the solutions of: 

 (𝑖𝛾𝜇𝑝𝜇 −𝑚)𝑢 = 0              (𝑖𝛾
𝜇𝑝𝜇 +𝑚)𝑣 = 0 (2.124) 

The two different solutions for each of the fermions and antifermions 

correspond to two possible spin states. For a fermion with momentum �⃗�  along 

the z-axis, 𝜓 = u1(pµ) e−ip·x describes a spin-up fermion and 𝜓 =u2(pµ) e−ip·x 

describes a spin-down fermion. For an antifermion with momentum �⃗�  along 

the z-axis, 𝜓 = ν1(pµ) e−ip·x describes a spin-up antifermion and 𝜓 = ν2(pµ)e−ip·x 

describes a spin-down antifermion. 

 

Figure 2.13: Helicity eigenstates for a particle or antiparticle travelling along the +z 

axis. 

 

The u1, u2, ν1 and ν2 spinors are only eigenstates of �̂�𝑧 for momentum p along 

the z-axis. These states take equal probabilities. For our purposes it makes 

more sense to project the spin along the particle’s direction of flight, this 

defines the helicity, h of the particle.  

 ℎ̂ =
𝑆 ⋅ 𝑝 

|𝑆 ||𝑝 |
=
2𝑆 ⋅ 𝑝 

|𝑝 |
  (2.125) 

Particle 

Anti-particle 

u1
 

u2
 

v1
 

v2
 

+ve 

+ve 

−ve
ve 

−ve
ve 
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For a spin 1/2 fermion, the two possible values of h are h = +1 or h = −1. We 

call h = +1 right-handed and h = −1 left-handed. The possible states of 

particles and antiparticles are shown in figure (2.13). As we will see, the 

concept of left- and right-handedness plays an important role in calculating 

matrix elements and in the weak force. If it is also worth noting here, massless 

fermions, are purely left-handed (only u2 and h = -1); massless antifermions 

are purely right-handed (only ν1 and h = +1). [8] 

 

 

2.12  Fermion currents 

We need to define a Lorentz invariant quantity to describe fermion currents 

for QED. We define the adjoint spinor �̅� ≡ ψ†γ0, where ψ† is the Hermitian 

conjugate (complex conjugate transpose) of 𝜓: 

 

𝜓 = (

𝜓1
𝜓2
𝜓3
𝜓4

)          

  𝜓† = (𝜓∗)𝑇 = (𝜓1
∗, 𝜓2

∗ , 𝜓3
∗ , 𝜓4

∗)                      

𝜓‾ ≡ 𝜓†𝛾0 = (𝜓1
∗, 𝜓2

∗ , −𝜓3
∗ , −𝜓4

∗) 

(2.126) 

The adjoint Dirac equation can be formed by taking the Hermitian conjugate 

of the Dirac equation (2.107), and multiplying it from the right by γ0: 

  𝑖 ∂𝜇𝜓‾𝛾
𝜇 +𝑚𝜓‾ = 0 (2.127) 

Multiplying the adjoint Dirac equation (2.127) by 𝜓 from the right, (or the 

original Dirac equation by �̅� from the left) gives the continuity equation which 

is described by Lorentz invariant quantity. 
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  ∂𝜇(𝜓‾𝛾
𝜇𝜓) = 𝜓‾𝛾𝜇(∂𝜇𝜓) + (∂𝜇𝜓‾)𝛾

𝜇𝜓 = 0     (2.128) 

    or  ∂𝜇𝑗
𝜇 = 0 (2.129) 

Where jµ is the four-vector fermion current: 

 𝑗𝜇 = 𝜓‾𝛾𝜇𝜓 = (𝜓‾𝛾0𝜓,𝜓‾𝛾 𝜓) = (𝜌, 𝚥  ) (2.130) 

and ρ is the probability density: 

 𝜌 = 𝑗0 = 𝜓‾𝛾0𝜓 = 𝜓†𝜓  (2.131) 

The fermion current j𝜇 = 𝜓‾𝛾μ𝜓 and it has the properties of a Lorentz four-

vector, which is what we required. Additionally, the probability density ρ is 

positive definite for all four possible spinor states. This is only true if we use 

the adjoint form with �̅� 

The previous discussion is characterized for spin ½ fermions like electrons 

and mesons. For integer spin particles (Bosons) like photons, there are three 

spin projections corresponding to three possible helicity states s = +1, 0, −1. 

s = 0 is known as longitudinal polarization, and the s = ±1 are transverse 

polarizations (actually left and right-handed circular polarizations). For 

massless particles, the s = 0 state does not exist. Plane wave solutions can be 

written as 

 𝜓 = 𝜖𝜇(𝑝; 𝑠) 𝑒−𝑖𝑝⋅𝑥  (2.132) 

  where 𝜖𝜇(𝑠) is the polarization vector, which depends on the spin, s, of the 

photon. The polarization vector is Lorentz gauge invariant quantity: 

 𝑝𝜇𝜖
𝜇 = 0  (2.133) 
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In scattering theory by QED, the exchange virtual boson like photons have 

𝑞2 ≠ 0, and thus can have both longitudinal and transverse polarization. This 

is also true for the massive W and Z bosons.[8] 

2.13 Feynman Diagrams 

In QED theory[4], the electromagnetic interaction is represented by Feynman 

diagram which is a powerful technique that simplifies the mechanism of 

interaction. In addition, it is used to calculate the cross-section of scattering 

process by introducing a very important parameter which is called matrix 

element ℳ, that indicates the probability of this interaction to happen. Also, 

it is called scattering amplitude which connects between initial and final states 

of scattering process. It describes the interactions between boson particles 

with both projectile and target and carries information like mass, energy, 

momentum, and spin. The following figure gives a simple form of Feynman 

diagram of scattering process of two electrons. 

 

Figure 2.14: shows the scattering process for two electrons in terms QED using 

Feynman diagram. 

In the previous chapter we explained the basic assumption of QED to describe 

the interactions in terms of exchange boson. In this example it will be photon 

as a mediated boson between interacting particles. Here, two electrons enter 

the interaction then a photon passes between them. It is not possible to say 

Time Flow 
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which electron emits the photon and which one absorbs. In classical theory, 

this interaction is called Coulomb repulsion of like charges when they are at 

rest. In QED this process is called Moller scattering. The Feynman diagram 

consists of main parts they will be illustrated as listed below.  

1- Fermion lines, it is the line with arrow indication. If the arrow takes the 

time flow it belongs to fermion propagates in time. Otherwise, it 

belongs to anti-fermion.  

2- Propagator wavy line, it is the line which indicates the exchange boson 

for the interaction of two electrons. In this case photon represents 

electromagnetic interaction. It is a photon. 

3- Vertices represent the places where particles are created or annihilated. 

In the case of electromagnetic interaction, the vertex couples a photon 

to a charged particle with strength proportional to its charge. 

 

Fermion  
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As a conclusion, these diagrams consist of lines representing particles while 

vertices describe which particles are created or annihilated. The diagrams 

represent transitions between well-defined 4-momentum states that include 

the contributions from all possible paths in both time and space. This means 

that it is not meaningful to ask about the time-ordering of any channel of the 

internal events, while all possible time-orderings are necessarily included. 

Each Feynman diagram actually stands for a particular number, which can be 

calculated using the so-called Feynman rules. It takes different processes as 

the following: 

Firstly, we draw all the diagrams that have the appropriate external lines (it 

may contain initial channel with two vertices as shown in figure (2.15). 

 

Figure 2.15: Feynman diagram with two vertices. 

and may contain another channel with four vertices as shown in figure (2.16) 

and infinitely so on).  
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Figure 2.16: Feynman diagram with four vertices (containing a loop). 

It is possible to evaluate the contribution of each diagram and add it all up. 

The sum of all possible Feynman diagrams with the given external lines 

represents the actual physical process. The total Feynman diagrams give a 

more accurate description of the interaction with more vertices. Each vertex 

introduces a constant fraction factor called fine structure constant α = (e2 /hc) 

so the higher vertices diagrams become less and less effective. Because this is 

such a small number, diagrams with more and more vertices contribute less 

and less to the final result and these diagrams may be ignored depending on 

the accuracy you need. In fact, in QED it is rare to see a calculation that 

includes diagrams with more than four vertices. The Feynman rules enforce 

conservation of energy and momentum at each vertex, and hence for the 

diagram as a whole. 

Secondly, to determine the scattering cross-section, by calculating the matrix 

element using Feynman diagrams then inserting it into Fermi’s golden rule 

relation of two body scattering as  

 
𝑑𝜎

𝑑Ω
= (

ℏ𝑐

8𝜋
)
2 𝑆|ℳ|2

(𝐸1 + 𝐸2)
2

|p𝑓|

|p𝑖|
 (2.134) 

where |𝑃𝑓| is the magnitude of either outgoing momentum and |𝑃𝑖| is the 

magnitude of either incoming momentum. S is a product of statistical factors: 
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l/j! for each group of j identical particles in the final state. Now we need to get 

the matrix element ℳ  to get the differential cross-section for scattering 

interaction. This will be calculated according to the following steps:  

1- Label the incoming and outgoing four-momenta p1, p2 , . .pn,, and the 

corresponding spins s1 , s2 , . . . , sn; label the internal four- momenta q1 , 

q2 ,… and it shown in figure (2.17). Assign arrows to the lines as follows: 

the arrows on external fermion lines indicate whether it is an electron or a 

positron; arrows on internal fermion lines are assigned so that the 

“direction of the flow” through the diagram is preserved (i.e., every vertex 

must have one arrow entering and one arrow leaving). The arrows on 

external photon lines point “forward”; for internal photon lines the choice 

is arbitrary. (See figure. 2.17) 

 

Figure 2.17: A typical QED diagram, with external lines labeled. (Internal lines not 

shown. 
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2- External Lines. External lines contribute factors as follows: 

3- Each vertex contributes by a factor called vertex factor.  

𝑖𝑔𝑒𝛾
𝜇 

Where 𝑔𝑒 is the dimensionless coupling constant which is related to the 

charge of the positron: 𝑔𝑒 = 𝑒√4𝜋 ∕ ℏ𝑐 = √4 𝜋 𝛼. In writing the 

Feynman rules we are dealing with electrons and positrons. In general, 

the QED coupling constant is = −𝑞√4𝜋 ∕ ℏ𝑐 , where q is the charge of 

the particle (as opposed to the antiparticle). 

4- Each internal line contributes a factor called as propagator factor 

depends on the boson mass and is described as 
𝑖(𝛾𝜇𝑞𝜇+𝑚𝑐)

𝑞2−𝑚2𝑐2
  for 

massive propagators and takes 
𝑖𝑔𝜇𝜐

𝑞2
 for photon. 

5- For each vertex the conservation of energy and momentum must be 

satisfied where a delta function must write in the form 

(2𝜋)4𝛿4(𝑘1 + 𝑘2 + 𝑘3) 

where the k‘s are the three four-momenta coming into the vertex (if an arrow 

leads outward, then k is minus the four-momentum of that line, except for 
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external antiparticle). This factor enforces conservation of energy and 

momentum at the vertex. 

6-  For each internal momentum q, write a factor  
𝑑4𝑞

(2𝜋)4
  and integrate.  

7- Cancel the delta function and the result will include a factor 

(2𝜋)4𝛿4(𝑝1 + 𝑝2 +⋯− 𝑝𝑛) 

corresponding to overall energy-momentum conservation. Cancel this factor, 

and what remains is  −𝑖ℳ 

This can be summarized as  

1-write down all diagrams contributing to the process (up to the desired order), 

2- calculate the amplitude (ℳ) for each one, and add them up to get the total 

amplitude,  

3- inserted into the appropriate formula for the cross-section.  

As we can see, the previous procedure is applied for example electron-muon 

scattering shown in figure 2.18 

 

Figure 2.18: Electron-muon scattering. 
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The simplest case is electron-muon scattering[4], for here only one diagram 

contributes in lowest order. In applying the Feynman rules, we proceed 

“backward” along each fermion line 

 
(2𝜋)4∫ [𝑢‾ (𝑠3)(𝑝3)(𝑖𝑔𝑒𝛾

𝜇)𝑢(𝑠1)(𝑝1)]
−𝑖𝑔𝜇𝑣

𝑞2
[𝑢‾ (𝑠4)(𝑝4)(𝑖𝑔𝑒𝛾

𝜈)𝑢(𝑠2)(𝑝2)]  

× 𝛿4(𝑝1 − 𝑝3 − 𝑞)𝛿
4(𝑝2 + 𝑞 − 𝑝4)𝑑

4𝑞 

(2.135) 

Notice that the space-time indices on the photon propagator contract with 

those of the vertex factors at either end of the photon line. Carrying out the 

(trivial) q integration, and dropping the overall delta function, we can find the 

matrix element of electron-muon scattering as  

 ℳ = −
𝑔𝑒
2

(𝑝1 − 𝑝3)
2
[𝑢‾ (𝑠3)(𝑝3)𝛾

𝜇𝑢(𝑠1)(𝑝1)][𝑢‾
(𝑠4)(𝑝4)𝛾𝜇𝑢

(𝑠2)(𝑝2)] 
(2.136) 

After we get the matrix element, we use it to find the scattering differential 

cross-section by substituting into equation (2.134) (Fermi’s Golden Rule) of 

two body scattering. This will be described in detail in the next chapter as we 

will apply this theory for electron-proton scattering to get the scattering cross-

section for this interaction which is the main objective of this thesis.   

 

  



 

(66) 
 

 

 

 

 

 

 

 

 

Chapter 3  

Electron-Proton Elastic Scattering 
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3.1 Elastic Electron-Proton Scattering  

In particle physics[9], scattering experiments are the most effective tool of 

research and allow studying the interactions between particles. It is a suitable 

technique for probing the properties of the initial phase of nuclear matter and 

their structure. A great importance to study electron-proton scattering because 

it is the best prop to investigate the properties of the internal structure of 

proton. Electron with a given energy E, and momentum 𝑝 can resolve 

distances of De' Brogli wavelength 𝜆 where 𝜆 =
ℏ

𝑝
 compared to proton 

radius 𝑟𝑝. At very low electron energies where 𝜆 ≫ 𝑟𝑝, the electron scattering 

off proton is equivalent to that from point-like spin-less object  as shown in 

figure (3.1). 

 

   

     (a)        (b)             (c)             (d)  

Figure 3.1: Probing the proton by increasing electron energy. 

At low electron energy, 𝜆~𝑟𝑝 the scattering is equivalent to that from an 

extended charged object figure (3.1 b). At high electron energies, 𝜆 < 𝑟𝑝 the 

wavelength is sufficient short to resolve sub-structure to consider the 

scattering processes are incoherent from that obtained at low energy and are 

due to proton constituent of quarks figure (3.1 c). At very high electron 

energies 𝜆 ≪ 𝑟𝑝, the proton appears to be a sea of quarks and gluons figure 

Electron Energy increases 
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(3.1 d). The scattering processes are classified into two main categories. The 

first is elastic-scattering in which the proton is treated as point-like with a 

single scattering center. Second, is the inelastic-scattering in which proton is 

considered as a convention of point-like matter called partons or quarks which 

are treated as a collection of many scattering centers and responsible for 

production of secondary new hadrons.   At low electron energy, the proton is 

a simple point charge, obeying the Dirac equation given in chapter 2. Consider 

an elastic scattering for electron-proton at low energies e + p → e + p. The 

lowest-order Feynman diagram is shown in figure (3.2). This figure shows 

two vertices diagram first describe the interaction between electron-photon 

and second is for photon-proton interaction.[4] 

 

Figure 3.2: Feynman diagram with single photon of electron-proton scattering. 

In this section, we will investigate the scattering process in terms of QED. 

QED theory applied in terms of Feynman diagrams, using Golden rules where 

the exchange boson is virtual photon (γ) has a four-momentum q. We define 

the important Lorentz-invariant four-momentum transfer squared represented 

by Q2 where Q2 = - q2 

 𝑄2 ~ 4𝐸𝐸′ sin2 (
θ

2
) (3.1) 
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An electron with initial four-momentum p1 scatters from a proton of four-

momentum p2 and emerges with a final four-momentum p3 and p4. The virtual 

photon transfers a four-momentum q to the proton. In the case of elastic 

scattering, (𝑝3 + 𝑞)
2 = 𝑝4

2 = 𝑀2 where M is the mass of the proton. The 

simplest case in which the spin scattering amplitude is obtained by applying 

Feynman rules explained in chapter 2 and it  has been given by the expression  

 ℳ = −
𝑔𝑒
2

(𝑝1 − 𝑝3)
2
[𝑢‾ (𝑠3)(𝑝3)𝛾

𝜇𝑢(𝑠1)(𝑝1)][𝑢‾
(𝑠4)(𝑝4)𝛾𝜇𝑢

(𝑠2)(𝑝2)] 
(3.2) 

Where 𝑢 and �̅� represent the four spinors of spin s, for incoming and outgoing 

particles respectively and eight γ-matrices produced from two vertices. Each 

vertex contributes a factor 𝑖𝑔𝑒𝛾
𝜇 where 𝑔𝑒 is dimensionless coupling 

constant, 𝑔𝑒 = 𝑒√4𝜋/ℏ𝑐 = √4𝜋𝛼   which related to the electric charge e. If 

we know the spins of the incoming and outgoing particles, we can write down 

the appropriate spinors and do the matrix multiplication. In experiments, 

beams of electrons have a random spin, we might measure only the number 

of particles scattered at a particular angle θ measured from direction of 

incident beam. In this case the relevant cross-section is the average over all 

initial spin configurations i, and the sum over all final spin configuration f. In 

principle, we could compute |ℳ(𝑖 → 𝑓)|2 for every possible combination, 

and then do the summing and averaging. The scattering cross-section of 

electron of mass m off proton of mass M where M˃˃m is given by  

 
𝑑𝜎

𝑑Ω
= (

ℏ

8𝜋𝑀𝑐
)
2

⟨|ℳ|2⟩  (3.3) 

where, ⟨|ℳ|2⟩  is spin average amplitude. In practice, it is much easier to 

compute ⟨|ℳ|2⟩  directly, without ever evaluating the individual amplitudes. 

Consider, for instance, the electron-proton scattering amplitude given in 

equation (3.2) and squaring, we have 
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|ℳ|2 =
𝑔𝑒
4

(𝑝1 − 𝑝3)
4
[𝑢‾(3)𝛾𝜇𝑢(1)][𝑢‾(4)𝛾𝜇𝑢(2)] 

× [𝑢‾(3)𝛾𝜈𝑢(1)]∗[𝑢‾(4)𝛾𝜈𝑢(2)]
∗ 

(3.4) 

Applying Casimir’s trick twice, (it explained in detail in appendix A) we find 

⟨|ℳ|2⟩ as  

 
⟨|ℳ|2⟩ =

𝑔𝑒
4

4(𝑝1 − 𝑝3)
4
Tr[𝛾𝜇( 𝑝 1 +𝑚𝑐)𝛾

𝜈(𝑝 3 +𝑚𝑐)] 

× Tr [𝛾𝜇(𝑝 2 +𝑀𝑐)𝛾𝜈(𝑝 4 +𝑀𝑐)] 

(3.5) 

where, the trace for the electron fermion current is  

 
Tr[𝛾𝜇(𝑝 

1
+𝑚𝑐)𝛾𝜈(𝑝 

3
+𝑚𝑐)] 

= 4[𝑝1
𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈((𝑚𝑐)2 − (𝑝1 ⋅ 𝑝3))] 

(3.6) 

For each of the two particles they have two spin states and average must 

include a factor 1∕4. So  

⟨|ℳ|2⟩ =
4𝑔𝑒

4

(𝑝1 − 𝑝3)
4
[𝑝1
𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈((𝑚𝑐)2 − (𝑝1 ⋅ 𝑝3))]  

× [𝑝2𝜇𝑝4𝜈 + 𝑝4𝜇𝑝2𝜈 + 𝑔𝜇𝜈((𝑀𝑐)
2 − (𝑝2 ⋅ 𝑝4))] 

(3.7) 

 

=
8𝑔𝑒

4

(𝑝1 − 𝑝3)
4
[(𝑝1 ⋅ 𝑝2)(𝑝3 ⋅ 𝑝4) + (𝑝1 ⋅ 𝑝4)(𝑝2 ⋅ 𝑝3)  − (𝑝1 ⋅ 𝑝3)(𝑀𝑐)

2

− (𝑝2 ⋅ 𝑝4)(𝑚𝑐)
2 + 2(𝑚𝑀𝑐2)2] 

Apply in equation (3.3) for lab system in which electron is scattered from 

heavier and fixed proton as shown in figure (3.3). 
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Figure 3.3: Electron scattering from a heavy target. 

The unpolarized cross-section is independent of the azimuthal scattering angle 

φ. Therefore, it has two degrees of freedom, e.g. the energy of the incoming 

electron E and the scattering angle θ. where 

𝑝1 = (
𝐸

𝑐
, 𝐩1) ,  𝑝2 = (𝑀𝑐, 𝟎),  𝑝3 = (

𝐸′

𝑐
, 𝐩3) ,  𝑝4 = (𝑀𝑐, 𝟎) 

 

Where p1 and p3 are the incident and scattered electron momenta and E's are 

the corresponding energies where 𝑝1. 𝑝3 =  𝑝2 𝑐𝑜𝑠𝜃  and 

(𝑝1 − 𝑝3)
2 = −(p1 − p3)

2 = −p1
2 − p3

2 + 2p1 ⋅ p3   = −2p
2(1 − cos 𝜃)

= −4p2sin2 
𝜃

2
 

and (𝑝1 ⋅ 𝑝3) =
𝐸2

𝑐2
− 𝐩1 ⋅ 𝐩3 = 𝐩

2 +𝑚2𝑐2 − 𝐩2cos 𝜃 = 𝑚2𝑐2 + 2𝐩2sin2 
𝜃

2
 

(𝑝1 ⋅ 𝑝2)(𝑝3 ⋅ 𝑝4) = (𝑝1 ⋅ 𝑝4)(𝑝2 ⋅ 𝑝3) = (𝑀𝐸)
2

 

(𝑝2 ⋅ 𝑝4) = (𝑀𝑐)
2 

Use previous equations in equation (3.7) to write spin average amplitude as  

 ⟨|ℳ|2⟩ = (
𝑔𝑒
2𝑀𝑐

𝑝2sin2 (𝜃/2)
)

2

((𝑚𝑐)2 + 𝑝2cos2 
𝜃

2
) 

(3.8) 
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Then substitute with equation (3.8) in equation (3.3) to get differential cross-

section where 𝑔𝑒 = √4𝜋𝛼    

 
𝑑𝜎

𝑑Ω
= (

𝛼ℏ

2𝑝2sin2 (𝜃/2)
)
2

{(𝑚𝑐)2 + 𝑝2cos2 (𝜃/2)} (3.9) 

This is called Mott formula and gives a good approximation to study the 

differential cross-section for elastic electron-proton scattering. This equation 

will be used to calculate the theoretical cross-section and will be compared 

with corresponding values that obtained in experiments at different ranges of 

energy. It gives regular disagreement with experimental data and will be given 

in detail in chapter 4. This is explained due to new effects related to the 

internal components of proton and will modify the Mott formula as the 

following section. 

 

3.2 Proton Form Factors  

An additional treatment is applied by considering two effects of momentum 

transfer q where q=p1-p3 on both electron and proton in terms of tensors 

between electron-photon 𝐿electron
𝜇𝜈

  and the corresponding tensor for photon-

proton 𝐿𝜇𝜈 proton . The scattering amplitude will take the form  

 ⟨|ℳ|2⟩ =
𝑔𝑒
4

𝑞4
𝐿electron
𝜇𝜈

𝐿𝜇𝜈 proton  
(3.10) 

and equation. (3.6) becomes  

 𝐿electron 
𝜇𝜈

= 2{𝑝1
𝜇
𝑝3
𝜈 + 𝑝3

𝜈𝑝1
𝜇
+ 𝑔𝜇𝜈[(𝑚𝑐)2 − (𝑝1 ⋅ 𝑝3)]}  (3.11) 

By the same way the proton tensor is 𝐿𝜇𝜈 proton  is obtained by replacing 

electron mass m by proton mass M and momenta of proton p2 and p4 before 

and after scattering process respectively 

 𝐿𝜇𝜈 proton = 2{𝑝2𝜇𝑝4𝜈 + 𝑝4𝜇𝑝2𝜈 + 𝑔𝜇𝜈[(M𝑐)
2 − (𝑝2 ⋅ 𝑝4)]} (3.12) 



 

(73) 
 

The obtained cross-section is similar to Mott formula given before in equation 

(3.9). In order to study the effect of proton components, a second additional 

formalism is applied on process at high electron energy elastic scattering. This 

is by considering proton is not a simple point charge, and so, more additional 

formalism is introduced according to the internal physical properties. The 

incident electron has a chance to see an extended and a clear image of the 

proton for its constituents which are affected by electric and magnetic form 

factors. So, there must be a modification which called Form Factor F(q) added 

to the Mott formula to match this behavior. This modification describes the 

charge distribution inside the proton and is represented by electric form factor. 

The cross-section for an electron scattering from a static charge distribution 

of density 𝜌(𝑥 ), in the non-relativistic limit is given as:[3,10] 

 
𝑑𝜎

𝑑Ω
=
𝑑𝜎

𝑑Ω
|

point 

|𝐹(𝑞2)|2 (3.13) 

where F(q2) is the Fourier transform of the charge distribution 𝜌(𝑥 ). The form 

factor can be expressed as the Fourier transform as follows: 

  𝐹(𝑞 ) = ∫ 𝑑3𝑥𝜌(𝑥)𝑒𝑖�⃗� ⋅𝑥  (3.14) 

It can be shown that F(q2) can be identified as the electric form factor, GE(q2). 

Similarly, if the source has an extended magnetic moment distribution, then 

the Fourier transform of that distribution is the magnetic form factor GM (q2). 

At low electron energy where 𝜆 ≫ 𝑟𝑝 and no sensitivity for charge 

distributions inside proton F(q2)=1. At large q2 the electron is sensitive to 

charge distribution inside proton and F(q2)<1. At relativistic electron energy, 

the electron props the extended proton and strong sensitive to electric and 

magnetic distributions due to spin and orientation for both electron and proton 
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in addition to the recoil energy of proton. In the lowest-order QED, an 

additional process is represented as shown in figure (3.4). 

 

Figure 3.4: Feynman diagram for electron elastic scattering off extended proton 

constituents. 

The blob on the right describes the mechanism of interaction of the photon 

with the proton. Now, the left vertex describes the interaction of electron with 

photon and photon propagator is unchanged as before. The average spin 

amplitude ⟨|ℳ|2⟩ becomes sensitive to process at photon-proton vertex and 

equation (3.10) rewritten as  

 ⟨|ℳ|2⟩ =
𝑔𝑒
4

𝑞4
𝐿electron
𝜇𝜈

 𝐾𝜇𝜈 proton  
(3.15) 

where 𝐾𝜇𝜈 proton is hadronic tensor and unknown quantity describing the 

photon-proton vertex. The complete information about the target response is 

contained in Kµν with the nucleon spin, gauge invariance and symmetry 

properties allow a parameterization of the hadronic tensor. The quantity 𝑞 =

𝑝4 − 𝑝2 and will represent p2 to the initial proton momentum p. There are 

different ways used to describe this tensor depending on the possible 

mechanisms of photon-proton interaction. Energy of the experiments controls 

the most and general tensor of the two vectors p and q is  
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𝐾proton 
𝜇𝜈

= −𝐾1𝑔
𝜇𝜈 +

𝐾2
(𝑀𝑐)2

𝑝𝜇𝑝𝜈 +
𝐾4

(𝑀𝑐)2
𝑞𝜇𝑞𝜈 +

𝐾5
(𝑀𝑐)2

(𝑝𝜇𝑞𝜈 + 𝑝𝜈𝑞𝜇) (3.16) 

 

where Ki are investigated and unknown functions of the scalar variable q2 only 

and p2=(Mc)2 is constant where M is proton mass and q.p=-q2/2 . The K's 

functions are not independent and will have the same dimensions where  

 𝑞𝜇𝐾
𝜇𝜈 = 1 (3.17) 

 𝐾4 =
(𝑀𝑐)2

𝑞2
𝐾1 +

1

4
𝐾2       and     𝐾5 =

1

2
𝐾2 (3.18) 

The hadronic tensor Kµν can be expressed in terms of just two unknown 

functions say K1(q
2) and K2(q

2) where  

 𝐾proton 
𝜇𝜈

= 𝐾1 (−𝑔
𝜇𝜈 +

𝑞𝜇𝑞𝜈

𝑞2
) +

𝐾2
(𝑀𝑐)2

(𝑝𝜇 +
1

2
𝑞𝜇) (𝑝𝜈 +

1

2
𝑞𝜈) (3.19) 

The two functions K1 and K2 are fundamental to describe the structure of the 

proton and obtained from experimental data, which measure the cross-section 

of elastic scattering. According to equations (3.11) and (3.19), the average 

scattering amplitude is   

⟨|ℳ|2⟩ = (
2𝑔𝑒

2

𝑞2
)

2

{𝐾1[(𝑝1 ⋅ 𝑝3) − 2(𝑚𝑐)
2] + 𝐾2 [

(𝑝1 ⋅ 𝑝)(𝑝3 ⋅ 𝑝)

(𝑀𝑐)2
+
𝑞2

4
]} (3.20) 

In the laboratory frame, proton is at rest with momentum components 

p=(Mc,0,0,0) and incident electron with energy E scatters with emerging 

energy E' at angle θ. Neglect electron mass compared to E and E'. Electron 

components are  

𝑝1=
𝐸

𝑐
(1, 𝑝Ƹ𝑖)        and       𝑝3=

𝐸′

𝑐
(1, 𝑝Ƹ𝑓)             where        𝑝Ƹ𝑖 ∙ 𝑝Ƹ𝑓 = 𝑐𝑜𝑠𝜃 

It is customary for space-like (the meaning of space-like: it means that the 

interaction of scattering between electron and proton has only difference in 
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space not time, so they called space like)  processes to refer to the momentum 

transfer squared as Q2=-q2, which is a positive quantity. We find  

 ⟨|ℳ|2⟩ =
𝑔𝑒
4𝑐2

4𝐸𝐸′sin4 (𝜃/2)
(2𝐾1sin

2 
8

2
+ 𝐾2cos

2 
𝜃

2
) (3.21) 

The energy of the scatter electron E' is determined from incident electron 

energy E and scattering angle θ where   

 𝐸′ =
E

1 + (2𝐸/𝑀𝑐2)sin2 (𝜃/2)
 (3.22) 

The cross-section for particles with reduces mass is given as 

𝑑𝜎

𝑑Ω
= (

ℏ𝐸′

8𝜋𝑀𝑐𝐸
)
2

〈|ℳ|2〉                                  (3.23) 

Here the elastic cross-section for electron-proton is  

𝑑𝜎

𝑑Ω
= (

𝛼ℏ

4MEsin2 (𝜃/2)
)
2 𝐸′

E
[2𝐾1sin

2 (𝜃/2) + 𝐾2cos
2 (𝜃/2)] (3.24) 

Equation (3.24) is known as Rosenbluth formula.[4] Notice that its analogy to 

Mott cross-section in equation (3.9). Here the term E'/E is due to the proton 

recoil, called Mott correction in cross-section and the new term which is 

directly with sin2(θ/2)  is due to the magnetic interaction produced from spin-

spin interactions.  

In the next chapter, we will compare the results of theoretical predictions and 

corresponding experimental data to investigate the contribution of electric and 

magnetic form factors. 
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Chapter 4  

Comparison between Theoretical 

Predictions and Experimental Data 
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4.1 Scattering Experiments 

 

      The search for fine properties of nuclear materials  requires different 

experiments, especially at  very-high energies. In this section we will briefly 

talk about some laboratories which deal with scattering experiments and their 

ranges of energy which help to compare the results of the theoretical 

predictions obtained from this research.  The scattering  experiments at  high-

energy are concentrated in a small number of places.  The large accelerator 

facilities employ a variety of acceleration devices and have sophisticated 

arrays of detectors to permit analysis of the results. One of the most well-

known laboratories or colliders that deals with scattering experiments is 

SLAC (Stanford Linear Accelerator Center) has a 2-mile linear accelerator. In 

a single pass, it accelerates electrons to 25 GeV. Research at SLAC is 

interested in the internal structure of proton and the properties of elementary 

particles as charm quark, quark structure and the tau lepton. Another important 

laboratory is Fermilab located near Chicago specializing in high-energy 

particle physics.  Fermilab's main injector is 3.3 km in circumference. It had 

the Tevatron, one of the most powerful colliders. It was designed to reach 1 

TeV. The third laboratory is the Brookhaven national laboratory in New York. 

It was the first facility to employ a proton synchrotron up to 250 GeV. The 

Relativistic Heavy Ion Collider (RHIC) at Brookhaven is a synchrotron 

particle accelerator with a circumference of 4 kilometers. The search for 

nuclear phase, called quark-gluon plasma, is achieved from high energy 

collisions hadron-hadron, hadron-nucleus and nucleus-nucleus. The 

experiments to date have involved accelerating two beams of gold ions in 

opposite directions around the circle and then directing them together for a 
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collision experiment which may produce the quark-gluon plasma state. The 

last laboratory is the European organization for nuclear research known as 

CERN laboratory for particle physics is located just outside Geneva, 

Switzerland. It has a 27-kilometer circumference circular tunnel which houses 

the Large Electron-Positron Collider (LEP). And the Large Hadron Collider 

(LHC) which should produce proton-proton collisions in the energy range 10-

14 TeV. [11] 

 

4.2 Theoretical Prediction and Experimental Data  

 

In the following sections, we will calculate the cross-section for electron-

proton scattering at different values of electron energies using the derived 

Mott formula as given in equation (3.9). These calculations are compared with 

experimental data which were carried out in global laboratories at the same 

energies to check the postulates which are assumed during these calculations. 

These comparisons will be interested by elastic cross-section and their 

modifications. Also, checkup of the proton electric and magnetic form factors 

which are assumed for relatively high energy experiments. 

4.2.1 Cross-section Calculations 

This section studies the calculations of cross-section using Mott formula for 

e-p scattering at wide range of energies and comparing them with 

experiments. During scattering process of electron proton, the momentum 

transfer Q2 (GeV/c)2 by photon is calculated from the corresponding 

experimental values measured from incident electron energy 𝐸, scattered 

electron energy 𝐸′, and the angle of scattering θ, where Q2  is calculated as  

 𝑄2 =  4𝐸𝐸′ sin2 (
θ

2
) (4.1) 
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First, at low-values of Q2 in the range 0.2-1 (GeV/c)2, Elastic e-p scattering 

cross-section is classified according to the magnitude of scattering angle into 

forward in which 𝜃 ≤  90° and backward at 𝜃 > 90°.These comparisons at 

different angles are shown in figure (4.1). 
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Figure 4.1: Variation of cross-section of e-p elastic scattering with Q2 at different 

scattering angles in forward directions. The solid line is the prediction of Mott formula 

while the dashed line represents the modified factor. 
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 Figure (4.1) shows the variation of the cross-section of e-p elastic scattering 

with Q2 at different scattering angles in the forward directions. The solid line 

represents the prediction of Mott formula and solid square represents the 

experimental data measure and is given in references[12] and [13]. For both 

theoretical and experimental data, the common observations enable us to 

conclude that the cross-section decreases with Q2 for all possible values of 

angles θ. Theoretical predictions are similar but not identical with 

experiments. The calculated values are greater than the experimental data in 

the forward angels. From this, we can conclude that Mott formula can give 

good physical analysis of scattering process but not identical due to a regular 

spacing between experiments and theoretical predictions. This spacing 

requires an additional modification to be matched with experimental data by 

a suitable factor called modified factor MF. This factor reduces the spacing to 

be in agreement with experiments and is shown by a dashed line shown in 

figure (4.1). It is important to study this remark for the backward angles at the 

same range momentum transfer Q2. Figure (4.2) shows the same comparisons 

but for backward angles θ>90o.  
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Figure 4.2: Variation of cross-section of e-p elastic scattering with Q2 at different 

scattering angles in backward directions. The solid line is the predictions of Mott 

formula while dashed line at modified factor. 
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By The same common observations, one can conclude that the cross-section 

decreases with Q2 for all backward angles. Theoretical predictions are similar 

but not identical with experimental data. The theoretical calculated values are 

greater than the experimental data in the forward directions (figure 4.1) and 

less in the backward one (figure 4.2) except for angle 110o. This may be due 

to low statistics or a mixture between the two assumed kinematics (forward 

and backward). Also, the same divergence between experimental data and 

theoretical prediction depends on both θ and Q2. Again, the additional 

modified factor MF is applied to reduce this divergence to match the data and 

is represented by dashed line. The variety in θ could be explained in terms of 

the dynamical parameters E, E', Q2 and the possible magnitudes of the impact 

parameter b. If the scattering is in backward direction, the impact parameter 

is less than the radius of proton and, the electron encounters the proton to 

transfer sufficient momentum and undergoes reverse scattering. 

Second, scattering cross-section at relatively high values of Q2 in the range 1-

25(GeV/c)2 is studied for the same experimental parameters. At relatively high 

values of Q2 where Q2 ≥ 1 (GeV/c)2, the same comparisons are shown in figure 

4.3. There is a similar divergence between experimental data [14,15]  and the 

calculated one. For all values of Q2, there is no elastic scattering in backward 

directions and all recorded experimental data are forward where θ ≤ 90o. So, 

the modified factor must be added to Mott formula and becomes in good 

agreement with the experimental data, which is represented by dashed lines. 

The physics of these factors will be discussed in the next section. 
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Figure 4.3 : Variation of cross-section of e-p elastic scattering at relatively high-values 

of Q2and at different scattering angles the solid line is the predictions of Mott formula 

while dashed line at modified factor. 

 

4.2.2 Electromagnetic Form Factors 

 

   Electromagnetic form factors MF are assumed parameters added to Mott 

formula to match experimental data of e-p elastic scattering for both low and 

high values of Q2. The dashed line in figures (4.1), (4.2) and (4.3) represents 

these predictions. The predicted MF gives information on the electric and 

magnetic properties of proton constituents, and mathematically represented 

by F(Q2). They could be described in terms of the charge distribution and 

magnetization of the proton. The variation of MF for all possible values of Q2 

in forward and backward angles is shown in figure 4.4 (a) and (b) respectively 

and given in table 4.1. Also, their dependance on θ is shown in figure (4.5).  
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Figure 4.4: Modified factor dependence on Q2 for forward angles (a) and for 

backward angles (b). 

(a) 

(b) 

 



 

(94) 
 

 

 

Figure 4.5 : Modified factor dependence on scattering angles at different Q2. 
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Table 4.1: Modified Factor for Low Q2 (Forward and backward angles) and for relative 

high values of Q2. 

At small values of Q2 Relative high values of Q2 

Q2 

[Gev/c]2 

MF(Q2)  

for θ ≤ 90o 

Q2 

[Gev/c]2 

MF(Q2) 

for θ > 90o 

Q2 

[Gev/c]2 

MF(Q2) 

0.1555 0.7317 0.1794 2.2850 1.0002 0.0807 
0.1794 0.5888 0.1944 2.3842 1.0021 0.1972 

0.1794 0.6782 0.2335 2.1720 1.1673 0.1536 

0.1947 0.7199 0.2721 2.0532 1.1682 0.0626 

0.2335 0.6105 0.2915 2.0730 1.4987 0.0356 

0.2339 0.5407 0.2915 2.0633 1.5005 0.0354 

0.2728 0.4903 0.2916 1.1874 1.5007 0.1004 

0.2730 0.5709 0.3112 2.0157 1.7500 0.0325 

0.2916 0.5387 0.3503 2.0169 1.7505 0.0239 

0.2916 0.5344 0.3503 2.0062 1.7522 0.0259 

0.2922 0.4631 0.3893 1.8897 1.7525 0.0752 

0.2922 0.4652 0.3893 1.8791 1.9983 0.0186 

0.3113 0.4235 0.3898 1.0924 2.0002 0.0177 

0.3498 0.3909 0.4280 1.8572 2.0006 0.0578 

0.3500 0.4738 0.5064 1.6301 2.0030 0.0254 

0.3500 0.4698 0.5064 1.6194 2.3306 0.0120 

0.3891 0.3714 0.5445 1.5681 2.3307 0.0430 

0.3891 0.3734 0.5445 1.5574 2.4970 0.0149 

0.3892 0.3018 0.5456 2.7220 2.5000 0.0146 

0.3894 0.3005 0.5833 1.5261 2.5011 0.0101 

0.3897 0.4402 0.5833 1.5155 2.7257 0.0093 

0.3897 0.4364 0.6226 1.4197 2.8620 0.0073 

0.3903 0.2859 0.6232 2.3693 2.9204 0.0069 

0.4287 0.4103 0.6624 1.4475 3.0003 0.0230 

0.4677 0.3771 0.7012 1.2655 3.0004 0.0062 

0.4677 0.3735 0.7012 1.2552 3.0070 0.0089 

0.4865 0.3537 0.7013 2.1170 3.2500 0.0074 

0.5066 0.3381 0.7404 1.2747 3.5045 0.0047 

0.5066 0.3347 0.7784 1.3589 3.7557 0.0032 

0.5072 0.2175 0.7795 1.9435 3.8939 0.0036 

0.5452 0.2690 0.8559 1.9852 4.0000 0.0040 

0.5453 0.3116 0.8571 1.2409 4.4779 0.0023 

0.5837 0.2935 1.0120 1.5126 5.0000 0.0022 

0.5837 0.2905 1.0899 1.3124 5.0270 1.37E-03 

0.5840 0.2618 1.1686 1.1518 5.0620 1.64E-03 

0.5841 0.1800   5.0751 1.22E-03 

0.5843 0.1951   7.3000 3.72E-04 

0.5847 0.1799   9.6290 1.31E-04 

0.6228 0.2697   9.9839 1.16E-04 

0.6613 0.2653   11.9900 6.02E-05 

0.6809 0.2667   15.7200 2.10E-05 

0.7005 0.2582   19.4700 7.98E-06 

0.7005 0.2553   23.2400 4.29E-06 
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In both directions, MF decreases with Q2 and takes fraction values in the 

forward angles and is weakly dependent on θ. It suddenly increases to become 

greater than unity for the backward angles. The backward scattering is more 

sensitive to both Q2 and θ. This process is hard elastic scattering and strongly 

affected by the internal proton constituents. It may be explained by 

considering that the two scattering patterns for both forward and backward 

directions have limited criteria namely, small values of Q2, and long 

wavelength for the incident electron wave compared to proton radius rp. These 

observations prove that there are different kinematics for elastic scattering 

process according to the impact parameter b. Firstly, at forward angles in 

which b ≥ rp, the center of scattering is located just outside the volume of the 

proton. Secondly, process produces scattering in backward angles at b < rp, in 

which the scattering center is located inside the proton volume and sensitive 

to the internal constituent of proton. In both cases, the scattering electron can 

feel the proton as integrated particle say point-like or collected particle with 

homogenous distributions of mass, charge, and magnetization. The transfer 

momentum Q2 is consumed in a form of limited excitation for proton 

constituents and proton still conserves its elastic components. At 𝑄2 ≈ 0, it is 

suitable to investigate the properties of the initial phase of the nuclear 

materials and their constituents. 

At relatively high values of Q2, the magnitudes of MF are much lower than 

the corresponding values at low values of Q2 and become strongly dependent 

on the scattering angle. This behavior is noticed before at the backward 

scattering for low Q2. It may be acceptable due to suitable reasons in which 

the electron becomes more sensitive and affected by the electric and magnetic 

properties of internal contents of proton. It is possible to conclude that for both 
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backward scattering at low Q2 and all angles at high Q2 the electron becomes 

strongly affected by the electric and magnetic fields that are produced from 

the internal proton constituents. The effect of these fields increases with Q2 

and it becomes the experimental tool to discover the internal constituents of 

the proton. The variation of MF with different Q2 at range Q2> 1 (GeV/c)2 is 

shown in figure (4.6). 
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Figure 4.6: Modified factor dependence on Q2 and angles of scattering. 

It is very clear from the above figures that the Modified factor must be 

introduced to match the experimental measurements with theoretical 

predictions. Elastic scattering of electrons from protons reveals information 

about the distribution of the charge and the magnetism. In general, proton 

static properties, including mass, electric charge, and magnetic moment, have 

been measured precisely [16]. The fundamental electromagnetic properties of 

the proton are described by the dynamical physical quantities called 

electromagnetic form factors, which give information about the proton 

structure. It plays an important role in providing information about the volume 

of static proton and strong interaction of many body systems of quarks and 

gluon. One of the form factors is sensitive to the charge distribution in the 

proton GE(Q2) and is called point-like electric form factor. The other is 

sensitive to distribution of the magnetization current, and the magnetic 
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moment of the proton GM(Q2) and it is called point-like magnetic form factor. 

They are real-valued functions of the four-momentum transfer squared, 

Q2=−q2 > 0. These can be measured from elastic electron-proton scattering 

experiments. These factors provide valuable information on the nuclear 

material at states close to ground state of the internal nuclear materials that 

constituent of the proton. These form factors were determined by making 

Rosenbluth separations [17, 18] of cross-section results. Experimentally, the 

number of scattered electrons in a specific direction determines the form 

factor and then compares the results with the corresponding theoretical 

predictions. The equation (3.24) in chapter 3 which is called Rosenbluth 

formula includes this modification. This can be simplified to another form by 

introducing the electric form factor GE and the magnetic form factor GM to a 

new form.  

ⅆ𝜎

ⅆΩ
=

𝛼2

4𝐸2sin4 (
𝜃
2)

𝐸′

𝐸
(
𝐺𝐸
2 + 𝜏𝐺𝑀

2

(1 + 𝜏)
cos2 (

𝜃

2
) + 2𝜏𝐺𝑀

2 sin2 (
𝜃

2
)) (4.2) 

Where 𝐾1 =  𝜏𝐺𝑀
2  and 𝐾2 =

𝐺𝐸
2+𝜏𝐺𝑀

2

(1+𝜏)
 and τ is Lorentz invariant quantity           

τ =  
𝑄2

4𝑀𝑝
2 . Here, a brief note on this equation is observed as a combination of 

multi-quantities. The first one is  
𝛼2

4𝐸2sin4(
𝜃

2
)
  which is called Rutherford cross-

section and  
𝐸′

𝐸
 due to recoiling of proton. The second two quantities are 

responsible for electromagnetic form factors, in which 2𝜏𝐺𝑀
2 sin2 (

𝜃

2
) is the 

magnetic term due to spin interaction while  
𝐺𝐸
2+𝜏𝐺𝑀

2

(1+𝜏)
cos2 (

𝜃

2
) is responsible 

for electric and magnetic scattering. 
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4.2.3 Rosenbluth Separation Method  

          In this section, it will be illustrated the method of separation of the 

Rosenbluth equation to get the electric form factor GE and the magnetic form 

factor GM separately. It shows the dependence of both factors on a wide range 

of momentum transfer Q2. In addition, it will be compared with other data for 

other co-workers. 

𝑑𝜎

𝑑Ω
= (

𝑑𝜎

𝑑Ω
)
𝑁𝑆
{
𝐺𝐸
2(𝑄2) + 𝜏𝐺𝑀

2 (𝑄2)

1 + 𝜏
+ 2𝜏𝐺𝑀

2 (𝑄2)tan2 (
𝜃

2
)} (4.3) 

                 

Where (
𝑑𝜎

𝑑Ω
)
𝑁𝑆

 is the non-spin elastic cross-section is given as 

(
𝑑𝜎

𝑑Ω
)
𝑁𝑆
=

(𝛼ħ𝑐)2cos2 (
𝜃
2)

4𝐸2sin4 (
𝜃
2)
[1 + 2(𝐸/𝑀𝑝)sin

2 (
𝜃
2)
]

= (
𝑑𝜎

𝑑Ω
)

Mott 

𝐸′

𝐸

 (4.4) 

In the one photon exchange approximation, the experimental un-polarized       

e-p differential cross-section can be written in the rest frame of the initial 

proton as  

𝑑𝜎

𝑑Ω𝑒
= 𝜎𝑀𝑜𝑡𝑡

𝜏𝐺𝑀
2 (𝑄2) + 𝜖𝐺𝐸

2(𝑄2)

𝜖(1 + 𝜏)
 (4.5) 

The elastic cross-section, 
𝑑𝜎

𝑑Ω𝑒
 , is differential with respect to a single variable, 

chosen to be the scattered electron angle. And 𝜖 is the degree of virtual photon 

linear polarization where         

𝜖 = [1 + 2(1 + 𝜏)tan2 (
𝜃

2
)]
−1
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and                                  𝑄2 =
2𝑀𝐸2(1−cos 𝜃)

𝑀+𝐸(1−cos 𝜃)
 

 

These two form factors encapsulate the elastic structure of the proton. The 

combination 
𝜖𝐺𝐸

2

𝜏
+ 𝐺𝑀 

2 appearing in equation (4.3) is often called the reduced 

cross-section σred defined by 

𝜎𝑟𝑒𝑑 = (
𝜖(1 + 𝜏)

𝜏

𝐸′

𝐸
(
𝑑𝜎

𝑑Ω
)
𝑒
) / (

𝑑𝜎

𝑑Ω
)
𝑀𝑜𝑡𝑡

 (4.6) 

  

𝜎𝑟𝑒𝑑 ≡
𝑑𝜎

𝑑Ω
⋅
𝜖(1 + 𝜏)

𝜏𝜎𝑀𝑜𝑡𝑡
 

(4.7) 

and is represented in a linear equation as 

𝜎𝑟𝑒𝑑 =
𝜖

𝜏
𝐺𝐸𝑝
2 (𝑄2) + 𝐺𝑀𝑝

2 (𝑄2) (4.8) 

The reduced cross-section σred described in equation (4.8) is a function in both 

polarization 𝜖 and τ, which are related to the experimental kinematic 

parameters. Their values are obtained from experimental measurements [12, 

14, 15, 19] at different values of Q2 and shown in figure (4.7).  
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Figure 4.7 : Reduced cross-section σr at different polarization ϵ for different values of 

Q2. 
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By varying beam energies and scattering angles, one can measure the reduced 

cross-section at a fixed values of Q2, but for different values of 𝜖 [12, 14, 15, 

19]. Then, performing a linear fit of these cross-section data as a function of 

𝜖, as shown in figure (4.8). 

 

Figure 4-8 : Rosenbluth Separation Method 

One can determine 
𝐺𝐸
2

𝜏⁄  as the slope and G2
M as the intercept. The magnitudes 

of both the electric and the magnetic form factors are calculated for each value 

of Q2. The data of this work is represented by star sign (*) in table 4.2 and is 

compared with the corresponding values from different groups given in 

reference[20]. These comparisons are shown in figure (4.9), and their values 

are given in table 4.2.  
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Figure 4.9: (a) Dependence of both electric and magnetic form factors on Q2. (b) and 

(c) are for magnetic and electric form factors respectively compared with other 

references [20]. 
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Table 4.2 : Values of electric and magnetic form factors with R-ratio at 

possible Q2. 

Q2 (Gev/c)2 GE GM R-ratio Ref. 

0.179 
0.6187 ± 0.0309 1.6988 ± 0.0849 1.0162 ± 0.0508 * 

(0.6472± 0.0178) (1.6317± 0.0532) __ 24 

0.272 0.5262 ± 0.0263 1.3623 ± 0.0681 1.0776 ± 0.0539 * 

(0.4982± 0.0100) (1.4147 ± 0.0116) (0.9830 ±0.0140) 25 

0.292 0.5074 ± 0.0254 1.3076 ± 0.0654 1.0827 ± 0.0541 * 

(0.5005± 0.0226) (1.3041± 0.0336) __ 24 

0.389 0.4129 ± 0.0206 1.1202 ± 0.0560 1.0283 ± 0.0514 * 

(0.4020± 0.0046) (1.1542± 0.0093) (0.9720 ±0.0170) 25 

0.467 0.3662 ± 0.0183 0.9879 ± 0.0493 1.0344 ± 0.0517 * 

(0.3522± 0.0203) (0.9777± 0.0212) __ 25 

0.545 0.3273 ± 0.0164 0.8789 ± 0.0439 1.0390 ± 0.0519 * 

(0.3136± 0.0227) (0.8742± 0.0196) __ 24 

0.584 0.2929 ± 0.0146 0.8285 ± 0.0414 0.9865 ± 0.0493 * 

(0.2911± 0.0039) (0.8458± 0.0058) (0.9600 ±0.0160) 25 

0.623 0.2738 ± 0.0137 0.7845 ± 0.0392 0.9738 ± 0.0487 * 

0.701 0.2785 ± 0.0139 0.6958 ± 0.0348 1.1169 ± 0.0558 * 

(0.2723±0.0218) (0.6925± 0.0155) __ 24 

0.856 0.2118 ± 0.0106 0.6244 ± 0.0312 0.9467 ± 0.0473 * 

1.000 0.1738 ± 0.0087 0.4863 ± 0.0243 0.9975 ± 0.0498 * 

(0.1710± 0.0044) (0.4915± 0.0043) (0.9710± 0.0260) 24 

1.750 0.0799 ± 0.0039 0.2437 ± 0.0122 0.9157 ± 0.0458 * 

 (0.0708± 0.0017) (0.2523± 0.0010) (0.7840 ±0.0200) 25 

2.003 0.0821 ± 0.0041 0.1920 ± 0.0096 1.1935 ± 0.0596 * 

2.497 0.0486 ± 0.0024 0.1425 ± 0.0071 0.9518 ± 0.0476 * 
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Continued table 4.2 

Q2 (Gev/c)2 GE         GM          R-ratio         Ref. 

 (0.0439 ±0.0016) (0.1325±0.0019) (0.9240±0.0349) 26 

3.007 0.0461 ± 0.0023 0.1021 ± 0.0051 1.2600 ± 0.0630 * 

4.000 0.0205 ± 0.0010 0.0655 ± 0.0033 0.8711 ± 0.0435 * 

 (0.0245± 0.0019) (0.0648± 0.0005) (1.0580 ±0.0890) 24 

 (0.0266±0.0017) (0.0629±0.0009) (1.1837±0.0787) 26 

5.000 0.0148 ± 0.0007 0.0439 ± 0.0022 0.9467 ± 0.0473 * 

 (0.0157± 0.0022) (0.0436± 0.0009) (1.0060± 0.1400) 24 

It is noticed that at all given values of Q2, the magnitudes of the magnetic form 

factor GM(Q2) are higher in value than the corresponding value for the electric 

factor GE(Q2). With increasing Q2, the two factors decrease gradually. This is 

in good agreement with experimental data [21]. This behavior proves that all 

possible systems that describe the internal charge distribution of the proton 

are mostly dynamical. The calculations predicted by different research groups 

[20] are in good agreement and may be represented by a unified general curve 

within the given range of Q2. 

4.2.4 R-Ratio  

The R-ratio is defined as the quantity of transverse to longitudinal 

polarizations and thus from the phase shift of the azimuthal scattering 

distribution of the experimental data. This ratio is useful for cross-section 

measurements. The electromagnetic form factor interest stems from the fact 

that changes of just a few percent in the nucleon form factors at low Q2 have 

direct implications on our understanding of the nucleon structure [22, 23]. In 
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Born approximation the ratio R is related to the electromagnetic form factors 

by the equation: 

 𝑅 ≡ 𝜇𝑝
𝐺𝐸
𝑃

𝐺𝑀
𝑃 = −𝜇𝑝

𝐸𝑒 + 𝐸𝑒
′

2𝑀
tan (

𝜃

2
)
𝑃𝑇
𝑃𝐿

 (4.9) 

where PT and PL are the recoil proton polarization transverse and longitudinal 

to the proton momentum. The magnitudes of R-ratio at different values of Q2 

and the corresponding values of GE and GM are also given in table 4.2 and its 

variation with Q2 is shown in figure (4.10). The corresponding values from 

many references [24, 25]are shown in the same figure. In this work, most of 

extracted values of GE and GM at different values of Q2 are agree with 

corresponding values calculated by different groups in Refs. [24, 26, 27] 

which used different tools of data analysis. Differences in the allowed region 

may be due to the errors of fitting parameters used in these tools. 

 

 
(a) 
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Figure 4.10 : Dependence of R-ratio on the electromagnetic form factors and 

Q2 (a) at small values of Q2 and (b) at relatively high-values of Q2. 

This dependence can be divided into two ranges. First, at low values of Q2 up 

to 0.6 (GeV/c)2 as shown in figure 4.10 (a) second, at high values up to 6 

(GeV/c)2 as shown in figure 4.10 (b). In the two ranges, the values of R-ratio 

are fluctuated around unity with acceptable range for all compared data. In 

figure 4.10 (a), the R-ratio becomes R>1, which means that the medium 

constituent of the proton is most parabolic toward electric form factor and 

inverted for high Q2 (figure 4.10 b) towards the magnetic form factor. This 

indicates that a suitable nature of the medium inside proton, in which both 

electric and magnetic properties fluctuate at possible excitation energies. It 

proves that the medium in the ground state is mostly static constituents and 

directed dynamically with increasing the square momentum transfer [29].   

   

 
(b) 
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4.2.5 Charge Proton Radius  

Proton radius and volume are important quantities to describe the structure 

of hadrons. There are many experimental techniques used to measure the 

radius of proton, including e–p scattering[28]. Experimentally, the charge 

radius of the proton can be determined using two different techniques. First, 

is the measurements of electron–proton elastic scattering cross-sections. 

Second, is the high-resolution spectroscopy of the hydrogen atom. A decade 

ago, the precision of the atomic spectroscopy method was greatly improved 

using muonic hydrogen atoms, wherein the electron is replaced by a muon. 

However, the value of the proton radius disagreed with previous 

determinations, giving rise to the “proton-radius puzzle”. Electric and 

magnetic form factors are associated with the hadronic matter distribution in 

hadron volume. So, there is good relationship between the volume of proton 

and electric and magnetic form factors especially at small values of Q2. The 

root mean square radius of the elastically scattering hadrons can be calculated 

by the following relation [30]: 

 ⟨𝑟2⟩ = −
6

𝐺(0)

ⅆ𝐺(𝑄2)

ⅆ𝑄2
|
𝑄2=0

 (4.10) 

Therefore, the charge radius can be determined from the slope of the form 

factors dGE/dQ2 at Q2=0. Previously it showed in figure 4.9 (a) the dependence 

of both the electric and the magnetic form factors on Q2. This dependence is 

fitted to the following equation  

 𝐺𝑑𝑖𝑝𝑜𝑙𝑒(𝑄
2) = [1 +

𝑄2

0.71
]

−2

 
(4.11) 
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This equation is described up to 10 (Gev/c)2 by the dipole approximation 

expression and its derivative with respect to Q2 is 

 
𝑑𝐺(𝑄2)

𝑑𝑄2
=

−2.8169

[1 + 1.4084 𝑄2]−3
 (4.12) 

Then it is applied when Q2 tends to zero. In this analysis, the root mean square 

value of the scattering proton radius is calculated using equation (4.10), note 

that 1 𝐺𝑒𝑉/𝑐 =  5.068 𝑓𝑚−1. The corresponding value of rp is equal to 

0.81±0.04 fm. The errors are obtained from the fitting parameters. The 

comparison of this value with the previous measurements at different 

techniques is shown in figure (4.11). 

 

Figure 4.11: Proton radius from different theoretical and experimental procedures. 

In figure 4.9(a), the slope of the form factors dGE /dQ2 at different values of 

Q2 gives the possibility to calculate the radius at which the electron explores 

the proton and is responsible for scattering called radius of scattering rs where 
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 rs ≤ rp. The root mean square value of the scattering radius can be derived 

from equations (4.10, 4.11 and 4.12) at different values of Q2. The 

corresponding calculations of the scattering radius at each value of Q2 are 

shown in figure (4.12). Its magnitudes are decreased with increasing the 

transfer square momentum in regular and continuous radius. It can be fitted 

by the exponential decay curve represented by the dash curve. There is similar 

dependence of the wavelength λ for photon which responsible for the energy 

carriers on Q2 and may be fitted by similar exponential function but with 

different fitting parameters represented by dashed line in figure (4.12). The 

proton scattering area decreases with Q2 and is simply represented in figure 

(4.13).  

 

Figure 4.12: Variation of scattering radius and wavelength of photon with Q2. 
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Figure 4.13: Scattering area decreases with increasing in Q2. 

It concludes that, with increasing Q2, both scattering radius and the 

wavelength of the photon are decreasing to allow the scattering process to take 

place from a single or group of constituents of the internal proton contents. 

This allows the production of the fine image of the internal proton structure 

and hence discovering the physical properties of its constituents. The 

resolution of the resulting image increases with the increase in Q2, and this 

leads to discovering the nature of the initial nuclear material in its primitive 

phase. 
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CONCLUSION 

   This thesis studies the physical properties of nuclear materials which are the 

main constituents of hadron like proton. Electron-proton scattering can satisfy 

this aim, and the following conclusion can be summarized as: 

1. There are two mechanisms of electron scattering off proton, one of 

them is in a forward direction where 𝜃 ≤ 90° and the other is backward 

𝜃 > 90°. This is explained by considering scattering in the forward due 

to a single point-like particle in which the impact parameter is greater 

than the proton radius. Scattering in backward direction is explained 

due to internal components of the proton where impact parameter is less 

than the proton radius. 

2. Two ranges of momentum transfer Q2 are investigated. First, at low 

Q2 < 1 (𝐺𝑒𝑉/𝑐)2, there are two mechanisms are found (forward and 

backward). Second, at high Q2 > 1 (𝐺𝑒𝑉/𝑐)2 the forward scattering 

only is found. 

3. There is a regular spacing between theoretical cross-section (Mott 

Formula) and experimental data for all ranges of momentum transfer 

Q2. 

4. Modified Factor (MF) is added to Mott formula to make an agreement 

between theoretical prediction and experimental data. 

5. This MF is explained as the electric and magnetic form factors which 

describes the charge distribution and magnetization distribution of the 

proton components.  
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6. Electric and magnetic form factors GE
, GM are calculated from reduced 

cross-section 𝜎𝑟 by using Rosenbluth separation method and agree with 

other theoretical techniques. They depend on the angle of scattering and 

values of momentum-transfer. 

7. At low values of momentum transfer, the majority of these factors are 

for electric rather than magnetic. It proves that the medium in (or near) 

the ground state is mostly static constituents and becomes dynamically 

with increasing the momentum transfer. At 𝑄2 ≈ 0, it is suitable to 

investigate the properties of the initial phase of the nuclear materials 

and their constituents. 

8. The charge radius of the proton is calculated to be 𝑟𝑝 ≈ 0.81 𝑓𝑚 and it 

is found to be acceptable with the previous measurements at different 

techniques. 

9. The scattering radius is also calculated and is found to be as an 

exponential decay with momentum transfer. 

10. The photon wavelength is decreasing with increasing Q2. It allows 

giving a fine image of proton components and increases the possibility 

of scanning proton constituents.  

These points are concluded to investigate the physical properties of the initial 

phase of nuclear matter, which are the main constituents of hadrons like 

proton. Quantum electro-dynamic theory gives a reasonable description for 

electron-proton scattering and gives quantitative formula for elastic cross-

section. At low-values of momentum transfer, the scattering process is 

explained by considering proton is a single point-like particle, while at high-
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values, scattering is due to the components of proton constituents. 

Comparison with experimental data shows regular spacings which require an 

additional modified factor MF must be added to introduce good agreement 

with experimental results. These MFs depend on both the angle of scattering 

and the four-momentum transfer. The obtained values of electric and magnetic 

form factors agree with the different values that obtained by other theoretical 

techniques. The charged proton radius is found to be 0.81±0.04 fm, which is 

the upper limit of the scattering radius. Finally, the scattering radius and the 

wavelength of the photon decrease with increasing Q2 at which the electron 

can scope the fine constituents of the internal structure of the proton. 
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APPENDIX A 

Before starting in explaining Casmir’s trick, we introduced some notes about 

Dirac equation and its solutions. It is found that free electrons and positrons 

of momentum p = (E/c, p), with 𝐸 = √𝑚2𝑐2 + 𝑝2𝑐2, are represented by the 

wave functions 

 For Electrons                       

 𝜓(𝑥) = 𝑎𝑒−(𝑖/ℏ)𝑝⋅𝑥
𝑢(𝑠)(𝑝)

 
(A.1) 

and positrons                       

 𝜓(𝑥) = 𝑎𝑒(𝑖/ℏ)𝑝⋅𝑥𝑣(𝑠)(𝑝) (A.2) 

where s takes possible values as s = 1, 2 for the two spin states. The spinors 

u(s) and ν(s) for particle and antiparticle respectively are satisfied the four 

momentum-space Dirac equations: 

(𝛾𝜇𝑝𝜇 −𝑚𝑐)𝑢 = 0                    anⅆ                 (𝛾
𝜇𝑝𝜇 +𝑚𝑐)𝑣 = 0 

and their adjoints, 𝑢‾ = 𝑢†𝛾0, 𝑣‾ = 𝑣†𝛾0, satisfy. 

𝑢‾(𝛾𝜇𝑝𝜇 −mc) = 0                     𝑎𝑛𝑑                   𝑣‾(𝛾
𝜇𝑝𝜇 +mc) = 0 

They are orthogonal, 

𝑢‾ (1)𝑢(2) = 0           anⅆ           𝑣‾(1)𝑣(2) = 0 

normalized, 

𝑢‾𝑢 = 2mc          anⅆ         𝑣‾𝑣 = −2mc 

and complete, in the sense that 
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 ∑  

𝑠=1,2

𝑢(𝑠)𝑢‾ (𝑠) = (𝛾𝜇𝑝𝜇 +𝑚𝑐) (A.3) 

 ∑  

𝑠=1,2

 𝑣(𝑠)𝑣‾(𝑠) = (𝛾𝜇𝑝𝜇 −𝑚𝑐)  (A.4) 

Meanwhile, a free photon of momentum p = (E/c, p), with 𝐸 = |𝑝|𝑐 is 

represented by the wave function of Photons. 

 𝐴𝜇(𝑥) = 𝑎𝑒−(𝑖/ℏ)𝑝⋅𝑥
𝜖
(𝑠)
𝜇

 
(A.5) 

where s = 1, 2 for the two spin states is replaced and represents two states of 

polarizations of the photon. The polarization vectors 𝜖(𝑠)
𝜇

 satisfy the 

momentum space Lorentz condition: 

𝜖𝜇𝑝𝜇 = 0 

They are orthogonal, in the sense that. 

𝜖(1)
𝜇∗
𝜖𝜇(2) = 0 

And normalized. 

𝜖𝜇∗𝜖𝜇 =  1 

In the Coulomb gauge  

𝜖0 = 0            𝑎𝑛𝑑          𝜖. 𝑝 = 0 

and the polarization three-vectors obey the completeness relation.  

 ∑  

𝑠=1,2

  (𝜖(𝑠))𝑖
(𝜖(𝑠)
∗ )

𝑗
= 𝛿𝑖𝑗 − �̂�𝑖�̂�𝑗  (A.6) 

In some experiments the incoming and outgoing electron (or positron) spins 

are specified, and the photon polarizations are given. If so, the next thing to 

do is insert the appropriate spinors and polarization vectors into the expression 



 

(131) 
 

and compute the matrix element |ℳ|2, the quantity we need to determine 

cross-sections and lifetimes. More often, however, we are not interested in 

spins. A typical experiment starts out with a beam of particles whose spin 

orientations are random, and simply counts the number of particles scattered 

in a given direction. In this case the relevant cross-section is the average over 

all initial spin configurations, i, and the sum over all final spin configurations, 

f: In principle, |ℳ(𝑖 → 𝑓)|2 

we could compute for every possible combination, and then do the summing 

and averaging:⟨|ℳ|2⟩𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑖𝑎𝑙 𝑠𝑝𝑖𝑛𝑠, 𝑠𝑢𝑚 𝑜𝑣𝑒𝑟 𝑓𝑖𝑛𝑎𝑙 𝑠𝑝𝑖𝑛𝑠, 𝑜𝑓   

|ℳ(𝑖 → 𝑓)|2 

let us introduce some convenient notation known as Feynman slash notation.  

a ≡ 𝑎𝜇𝛾𝜇 , a ∗ ≡ 𝛾𝜇𝑎𝜇 
∗ ,     and      Γ‾ ≡ 𝛾0Γ†𝛾0 

In practice, it is much easier to compute ⟨|ℳ|2⟩ directly, without ever 

evaluating the individual amplitudes. Consider, for instance, the electron-

proton elastic scattering will be represented by Feynman diagram 1.   

 

Figure 1 Feynman diagram with single photon of electron-proton scattering 

 Squaring amplitude, we have 
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|ℳ|2 =

𝑔𝑒
4

(𝑝1 − 𝑝3)
4
[𝑢‾(3)𝛾𝜇𝑢(1)][𝑢‾(4)𝛾𝜇𝑢(2)] 

× [𝑢‾(3)𝛾𝜈𝑢(1)]∗[𝑢‾(4)𝛾𝜈𝑢(2)]
∗ 

(A.7) 

We must handle quantities of the general form. 

 G ≡ [𝑢‾(𝑎)Γ1𝑢(𝑏)][𝑢‾(𝑎)Γ2𝑢(𝑏)]
∗ (A.8) 

where (a) and (b) stand for the appropriate spins and momenta, and Γ1 , and 

Γ2 are two 4 x 4 matrices. To begin, we evaluate the complex conjugate (which 

is the same as the Hermitian conjugate, since the quantity in brackets is a 1 x 

1 “matrix”): 

[𝑢‾(𝑎)Γ2𝑢(𝑏)]
∗ = [𝑢(𝑎)†𝛾0Γ2𝑢(𝑏)]

† = 𝑢(𝑏)†Γ2
†𝛾0†𝑢(𝑎) 

Now, 𝛾0† = 𝛾0, and (𝛾0)2 = 1, so 

[𝑢‾(𝑎)Γ2𝑢(𝑏)]
∗ = 𝑢(𝑏)†𝛾0𝛾0Γ2

†𝛾0𝑢(𝑎) = 𝑢‾(𝑏)Γ‾2𝑢(𝑎) 

Where   Γ‾2 ≡ 𝛾
0Γ2
†𝛾0 

 G = [𝑢‾(𝑎)Γ1𝑢(𝑏)][𝑢‾(𝑏)Γ‾2𝑢(𝑎)] 
(A.9) 

We are ready now to sum over the spin orientations of particle (b). Using the 

completeness relation 

 
∑  

𝑏 spins 

 𝐺 = 𝑢‾(𝑎)Γ1 { ∑  

𝑠𝑏=1,2

 𝑢(𝑠𝑏)(𝑝𝑏)𝑢‾
(𝑠𝑏)(𝑝𝑏)} Γ‾2𝑢(𝑎)

= 𝑢‾(𝑎)Γ1(𝑝 𝑏 +𝑚𝑏𝑐)Γ‾2𝑢(𝑎) = 𝑢‾(𝑎)𝑄𝑢(𝑎) 

(A.10) 

where Q is a temporary shorthand for the 4 X 4 matrix 

 𝑄 ≡ Γ1(p 𝑏 +𝑚𝑏𝑐)Γ‾2 (A.11) 

Next, we do the same for particle (a):  
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 ∑  

a spins 

∑ 𝐺

b spins 

 = ∑  

𝑠𝑎1,2

𝑢‾ (𝑠𝑎)(𝑝𝑎)𝑄𝑢
(𝑠𝑎)(𝑝𝑎) (A.12) 

   

 

∑  

𝑠𝑎=1,2

 𝑢‾ (𝑠𝑎)(𝑝𝑎)𝑖𝑄𝑖𝑗𝑢
(𝑠𝑎)(𝑝𝑎)𝑗

= 𝑄𝑖𝑗 { ∑  

𝑠𝑎=1,2

 𝑢(𝑠𝑎)(𝑝𝑎)𝑢‾
(𝑠𝑎)(𝑝𝑎)}

𝑗𝑖

= 𝑄𝑖𝑗(p a +𝑚𝑎𝑐)𝑗𝑖
= Tr (𝑄(p a +𝑚𝑎𝑐)) 

(A.13) 

Or, writing out the matrix multiplication explicitly (i and j are summed from 

1to 4):  where Tr denotes the trace of the matrix (the sum of its diagonal 

elements): 

Tr (𝐴) ≡∑  

𝑖

𝐴𝑖𝑖 

Conclusion 

 

∑  

all spins 

[𝑢‾(𝑎)Γ1𝑢(𝑏)][𝑢‾(𝑎)Γ2𝑢(𝑏)]
∗

= 𝑇𝑟 [Γ1(𝑝 𝑏 +𝑚𝑏𝑐)Γ‾2(𝑝 𝑎 +𝑚𝑎𝑐)] 

(A.14) 

This may not look like much of a simplification but notice that there are no 

spinors left; once we do the summation over spins, it all reduces to matrix 

multiplication and taking the trace. For want of a better name, it is called 

“Casimir’s trick,” since Casimir was apparently the first one to use it. 

In the case of electron-proton scattering, Casimir’s trick will be applied twice 

as the matrix element squared is 



 

(134) 
 

 
|ℳ|2 =

𝑔𝑒
4

(𝑝1 − 𝑝3)
4
[𝑢‾(3)𝛾𝜇𝑢(1)][𝑢‾(4)𝛾𝜇𝑢(2)] 

× [𝑢‾(3)𝛾𝜈𝑢(1)]∗[𝑢‾(4)𝛾𝜈𝑢(2)]
∗ 

(A.15) 

So, Casimir’s trick will be applied for the term [𝑢‾(3)𝛾𝜇𝑢(1)][𝑢‾(3)𝛾𝜈𝑢(1)]∗ 

to become 𝑇𝑟 [𝛾𝜇(𝑝 1 +𝑚𝑐)𝛾
𝜈(𝑝 3 +𝑚𝑐)]  

then applying it to the second term [𝑢‾(4)𝛾𝜇𝑢(2)][𝑢‾(4)𝛾𝜈𝑢(2)]
∗  

to become 𝑇𝑟 [𝛾𝜇(𝑝 2 +𝑀𝑐)𝛾𝜈(𝑝 4 +𝑀𝑐)] 

So, the final result will be  

 
⟨|ℳ|2⟩ =

𝑔𝑒
4

4(𝑝1 − 𝑝3)
4
𝑇𝑟 [𝛾𝜇(𝑝 1 +𝑚𝑐)𝛾

𝜈(𝑝 3 +𝑚𝑐)]

× 𝑇𝑟 [𝛾𝜇(𝑝 2 +𝑀𝑐)𝛾𝜈(𝑝 4 +𝑀𝑐)] 

(A.16) 

where m is the mass of the electron and M is the mass of the proton. The factor 

of ¼ is included because we want the average over the initial spins; since there 

are two particles, each with two allowed spin orientations, the average is a 

quarter of the sum. Casimir’s trick reduces everything down to a problem of 

calculating the trace of some complicated product of 𝛾 matrices. This algebra 

is facilitated by a number of theorems. Thus  

 
Tr (𝛾𝜇(p 1 +𝑚𝑐)𝛾

𝜈(p 3 +𝑚𝑐)]

= 4[𝑝1
𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈((𝑚𝑐)2 − (𝑝1 ⋅ 𝑝3))] 

(A.17) 

The second trace is the same with 𝑚⟶𝑀, 1 ⟶ 2, 3 ⟶ 4 and Greek indices 

are lowered. 
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𝑇𝑟 [𝛾𝜇(𝑝 2 +𝑀𝑐)𝛾𝜈(𝑝 4 +𝑀𝑐)]

= 4 [𝑝2𝜇𝑝4ν + 𝑝4𝜇𝑝2𝜈 + 𝑔𝜇𝜈((𝑀𝑐)
2 − (𝑝2 ⋅ 𝑝4))] 

(A.18) 

So, the result of average matrix element squared is.  

 

⟨|ℳ|2⟩ =
4𝑔𝑒

4

(𝑝1 − 𝑝3)
4
[𝑝1
𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈((𝑚𝑐)2 − (𝑝1 ⋅ 𝑝3))]

× [𝑝2𝜇𝑝4ν + 𝑝4𝜇𝑝2𝜈 + 𝑔𝜇𝜈((𝑀𝑐)
2 − (𝑝2 ⋅ 𝑝4))] 

⟨|ℳ|2⟩ =
8𝑔𝑒

4

(𝑝1 − 𝑝3)
4
[(𝑝1 ⋅ 𝑝2)(𝑝3 ⋅ 𝑝4) + (𝑝1 ⋅ 𝑝4)(𝑝2 ⋅ 𝑝3) 

−(𝑝1 ⋅ 𝑝3)(𝑀𝑐)
2 − (𝑝2 ⋅ 𝑝4)(𝑚𝑐)

2 + 2(𝑚𝑀𝑐2)2] 

(A.19) 

Note that this is independent of the reference frame. To consider the problem 

in a specific reference frame, write out the relevant four vectors in that 

reference frame and do the calculation. Consider the case of electron 

scattering from a heavy proton at rest: 

 

Figure 2 Kinematics of lap System 

Assume M >> m so that we can ignore the recoil of the heavy spin ½ particle.  

From the given figure  

𝑝1 = (
𝐸

𝑐
, 𝑝 1),            𝑝2 = (𝑀𝑐, 0⃗ ),      𝑝3 = (

𝐸

𝑐
, 𝑝 3)    𝑎𝑛𝑑       𝑝4 = (𝑀𝑐, 0⃗ )  

|𝑝 1| = |𝑝 3| ≡ 𝑝 

𝑝 1 ⋅ 𝑝 3 = 𝑝
2cos 𝜃 
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And the differential cross-section is given by 

𝑑𝜎

𝑑Ω
=

ℏ

8𝜋𝑀𝑐
⟨|ℳ|2⟩ 

The average squared matrix element  

 

⟨|ℳ|2⟩ = 8
𝑔4

(𝑝1 − 𝑝3)
4
{(𝑝1 ⋅ 𝑝2)(𝑝3 ⋅ 𝑝4)

+ (𝑝2 ⋅ 𝑝3)(𝑝1 ⋅ 𝑝4) − (𝑝1 ⋅ 𝑝3)(𝑀𝑐)
2

− (𝑝2 ⋅ 𝑝4)(𝑚𝑐)
2 + 2(𝑚𝑀𝑐2)2} 

(A.20) 

 

(𝑝1 − 𝑝3)
2 = −(𝑝 1 − 𝑝 3)

2 = −|𝑝 1|
2 − |𝑝 3|

2 + 2𝑝 1 ⋅ 𝑝 3 = −2𝑝(1 − cos 𝜃)

= −4𝑝2sin2 (𝜃/2)                                                                           (a) 

(𝑝1 ⋅ 𝑝3) =
𝐸2

𝑐2
− (𝑝 1 ⋅ 𝑝 3) = 𝑝

2 +𝑚2𝑐2 − 𝑝2cos 𝜃

= 𝑚2𝑐2 + 2𝑝2sin2 (𝜃/2)                                                                     (b) 

(𝑝1 ⋅ 𝑝2)(𝑝3 ⋅ 𝑝4) = (𝑝1 ⋅ 𝑝4)(𝑝2 ⋅ 𝑝3) = (𝑀𝐸)
2                                                 (𝑐)    

𝑎𝑛𝑑     (𝑝2 ⋅ 𝑝4) = (𝑀𝑐)
2                                                                                      (𝑑) 

Substitute with a, b, c, and d into (A.20) it becomes as  

⟨|ℳ|2⟩ = 8
𝑔4

(−4𝑝2sin2 (𝜃/2))2
{(𝑀𝐸)2 + (𝑀𝐸)2

− (𝑚2𝑐2 + 2𝑝2sin2 (𝜃/2))(𝑀𝑐)2 − (𝑀𝑐)2(𝑚𝑐)2

+ 2(𝑚𝑀𝑐2)2} 

⟨|ℳ|2⟩ = 8(
𝑔2

4𝑝2sin2 (𝜃/2)
)

2

{2(𝑀𝐸)2 − (𝑚2𝑐2 + 2𝑝2sin2 (𝜃/2))(𝑀𝑐)2

− (𝑀𝑐)2(𝑚𝑐)2 + 2(𝑚𝑀𝑐2)2} 
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⟨|ℳ|2⟩ = 8(
𝑔2

4𝑝2sin2 (𝜃/2)
)

2

{2𝑀2(𝑝2𝑐2 +𝑚2𝑐4)

− 2(𝑀𝑐)2𝑝2sin2 (𝜃/2) − (𝑚2𝑐2)(𝑀𝑐)2 − (𝑀2𝑐2)(𝑚2𝑐2)

+ 2(𝑚𝑀𝑐2)2} 

⟨|ℳ|2⟩ = 2(
2𝑔2

4𝑝2sin2 (𝜃/2)
)

2

{2𝑀2𝑐2(𝑚2𝑐2 + 𝑝2 − 𝑝2sin2 (𝜃/2))}

= (
𝑔2𝑀𝑐

𝑝2sin2 (𝜃/2)
)

2

{𝑚2𝑐2 + 𝑝2cos2 (𝜃/2)} 

 

 ⟨|ℳ|2⟩ = (
𝑔2𝑀𝑐

𝑝2sin2 (𝜃/2)
)

2

{𝑚2𝑐2 + 𝑝2cos2 (𝜃/2)} (A.21) 

Then substitute with this expression into the equation of differential cross-

section. 

 
𝑑𝜎

𝑑Ω
= (

𝛼ℏ

2𝑝2sin2 (𝜃/2)
)
2

{(𝑚𝑐)2 + 𝑝2cos2 (𝜃/2)}   (A.22) 

Where 𝑔 = √4𝜋𝛼. This is called Mott formula of differential cross-section. 

This is a good approximation in low energy electron-proton scattering.  

In the case that 𝑝2  << (𝑚𝑐)2 this means that the incident electron is non-

relativistic, so the expression reduced to  

𝑑𝜎

𝑑Ω
= (

𝛼ℏ

2𝑝2sin2 (𝜃/2)
)
2

(𝑚𝑐)2 = (
𝛼ℏ𝑚𝑐

2𝑝2sin2 (𝜃/2)
)
2

 

Using  𝛼 =
𝑒2

ℏ𝑐
     𝑎𝑛𝑑     𝑝 = 𝑚𝑣      the expression becomes  
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𝑑𝜎

𝑑Ω
= (

𝑒2

2𝑚𝑣2sin2 (𝜃/2)
)

2

 

which is Rutherford formula that is used in classical mechanics in non-

relativistic regions. 
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 الملخص
 

مثل    ات الرئيسية للهدرونهذه الرسالة الخصائص الفيزيائية للمواد النووية التي هي المكونات  تدرس  

من اهم الوسائل التي تساعدنا في تلك الدراسة   البروتون   مع  تجارب التشتت للإلكترون   وتعتبرالبروتون.  

دراسة الخصائص الفيزيائية الداخلية للهادرونات )البروتونات( مهمة  . تمكننا من تحقيق ذلك الهدف و

تجارب التشتت  حيث ان   الخصائص باستخدام تقنيات مختلفةيتم التحقيق في هذه  و   جدا في الفيزياء

( QED. تعد نظرية التشتت باستخدام الديناميكا الكهربائية الكمية )من تلك التقنيات المرنة هي واحدة  

فاينمان على    قواعد تم تطبيق  وفى تلك الرسالة  عالية.  ال  ات الطاقذات  طريقة مناسبة خاصة للتجارب  

وفى .  Mottباسم صيغة    ةالمعروف  لمساحة مقطع التشتت هادرون لإعطاء تعبير مناسب  -تشتت لبتون 

مساحة المقطع    مقارنة  وتم  البروتون مع  المرن للإلكترون    هذه الرسالة تم استنتاج مساحة مقطع التشتت 

أولا: يوجد   استنتاجين وبالمقارنة تم ملاحظة  .  المعملية لهذا النوع من التشتت القياسات  مع    المحسوبة

للطاقة  عند القيم المنخفضة  تباعد منتظم بين قيم مساحة المقطع المحسوبة والمقاسة معمليا. ثانيا: انه  

 الواحدة ويحدث التشتت من على سطحه ككل  ، يظهر البروتون كجسيم يشبه النقطة)كمية الحركة(

إلى أن    ذلك  . ويخلص عملية التشتت عند الطاقات العاليةتبدأ مكوناته بالمشاركة والتأثير في  بينما  

لجعل القيم المحسوبة لمساحة المقطع تتوافق مع    Mottهناك عاملا معدلا يجب إضافته إلى صيغة  

المعملية. للبروتون   القيم  الداخلية  للمكونات  والمغناطيسية  الكهربائية  بالخواص  العامل  هذا  .    يرتبط 

تم حساب هذه العوامل بطريقة فصل روزنبلوث  بالإضافة الى  وتسمى هذه العوامل عوامل الشكل.  

ومن  اتفقت القيم المحسوبة مع تلك.  حيث    أخرى   تجارب التي تم الحصول عليها من    القيممع    نتهامقار 

حساب   الرسالة  اهداف  قطر ضمن  على    نصف  الشحنات  القيم    البروتون توزيع  استخدام  تم  حيث 
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مع  .  فمتومتر  0.81  المحسوبة لعوامل الشكل في استنتاج قيمة نصف القطر للبروتون والتي كانت  

وذلك لانه مع   لبروتون ا  تفاصيل ادق لمكونات   يتم الحصول علىزيادة الطاقة الخاصة بالالكترون  

الحامل   للفوتون  وكذلك  الالكترون  لحركة  المرافقة  الموجية  للحركة  الموجي  الطول  يقل  الطاقة  زيادة 

الدقيقة   التفاصيل  في  التعمق  شأنه  من  وذلك  بوزون  يسمى  والذي  والبروتون  الالكترون  بين  للطاقة 

لمكونات البروتون. 
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