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ABSTRACT

Study of internal physical properties for hadrons (protons) is very important
in physics. These properties are investigated by using different techniques.
Elastic scattering experiments are one of them. Scattering theory using
Quantum Electro-Dynamics (QED), is a suitable method especially for high
energy experiments. Feynman diagrams are applied for Lepton-Hadron
scattering to give a suitable expression for scattering cross-section known as
Mott formula. In this thesis we drive it for electron-proton elastic scattering.
A comparison between this prediction and experimental measurements is
discussed. At low values of momentum transfer, the proton appears as a point-
like particle while its constituents appear to be contributed to scattering
process with high values. It concludes that there is a modified factor that must
be added to Mott formula. This factor is related to electric and magnetic
properties of the internal constituents of proton. These factors are called form
factors. By comparison with experimental data, the calculated values agreed
with that obtained from other groups. The charge radius of proton is expected
to be 0.81 fm. Different images for proton are obtained due to different values

of momentum transfer and compared with the photon wavelength.
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1.1 Introduction

Nuclear physics represents a basic branch of science, and it developed
back to Becquerel's discovery of radioactivity in 1896 in addition to
Rutherford's experiment of the existence of the nucleus in 1911. Experimental
and theoretical research in nuclear physics has been a significant contributor
to the growth in science of the twentieth century. The overall positive charge
in the nucleus as well as the total number of mass units define a nuclear
species. All elements are characterized by atomic number Z and charge Q
where Q = +Ze and |e| = 1.6 X 10712 C, the magnitude of the electronic
charge. The fundamental positively charged particle in the nucleus is the
proton, which is considered the nucleus of the simplest atom, hydrogen.
Atoms of the elements are electrically neutral charge they must have Z
negatively charged electrons. The nucleus must contain additional large mass
components called neutrons of number N. This number is independent of Z.
The sum of Z+ N = Ais called mass number or nucleon number. We
discover that nuclides with a particular atomic number can have multiple
various mass numbers, i.e., a nuclide with Z protons can have a range of
different neutron numbers. Isotopes are nuclides that share the same proton
number but have different neutron numbers; For instance, the two isotopes
17C13° and 17CI’”. They have unified chemical properties but differ in nuclear
properties because they have different neutron numbers. The term "isotone"
is frequently used to describe a group of nuclides that share the same N but
have various Z. *H and *He are the stable isotones with N = 1. Isobars are
nuclides that have the same mass number A; for example, radioactive *H and
stable *He are both isobars. Because the mass of the electrons is so little in

comparison to the mass of the proton (neutron) (m,=2000 m.). The electron

(10)



may frequently be neglected when talking about the mass of an atom. In
nuclear physics we use suitable scale of measuring lengths of the order of
10715m, which is one femtometer (fm). The proton radius is around 1 fm, and
the radius of nuclei increases with mass number to reach about 7 fm. For
nuclear mass the used unit is called atomic mass unit u where 1u =
1.6605402 x 107%27Kg. It defined such that the mass of an atom of '°C is
precisely 12 u. As a result, the nucleons have masses of around 1 u. For
nuclear energies, we use relativistic mass-energy relation E=mc? where c is
the speed of light. The conversion factor is 1lu = 931.502 MeV; so, the
nucleons have mass energies of approximately 1000 MeV. Sometimes the

masses of nuclear material are represented in terms of their energies [1]

1.2 Natural Units

In high energy and particle physics it is important to introduce suitable units
relevant to fundamental constants of relativistic quantum mechanics. The
magnitudes of both Plank’s constant h and ¢ are used by units’ value h=c =
1. Dimensional analysis may always be used to determine precisely where the
h's and c's enter any equation. As a result, it is common to speak about mass
(m), momentum (mc), and energy (mc?) all in terms of GeV, also to measure
length (h/mc) and time (h/mc?) in units of GeV-!where i = h/2m . We haven't
talked about the elementary charge e, which indicates how strongly two
electrons interact electromagnetically with one another. We analyze the
electromagnetic force of repulsion between two electrons separated by one
natural unit of length with the rest mass energy of an electron to derive a
dimensionless measure of the intensity of this interaction. The coupling

constant a (fine structure constant), for electromagnetic interactions will be

2

often employed and is defined as a = ~
4me hc 137
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In atomic physics, 41, = 1, hence @ = e? in Gauss system of units. while
a = e? /4w are more widely employed in particle physics and known as the

fine structural constant.[2]

1.3 Nature Fundamental Forces

Our understanding of the fundamental forces of nature, and hence of the
fundamental interactions between elementary particles, has developed with
our picture of elementary particles. By the end of the nineteenth century,
electricity and magnetism were accepted to be expressions of the same force
called electromagnetism. Later, it was discovered that atoms have a structure
and are made up of a positively charged nucleus and an electron cloud, with
the entire kept together by electromagnetic system. Nuclear physics provided;
two new short-ranged forces joined the ranks. These are the nuclear force,
which operates between nucleons, and the other is the weak force, which
reveals itself in nuclear decay[3]. Nuclear force is caused by the strong force
bringing quarks together to produce protons and neutrons. These strong and
weak forces cause the equivalent basic interactions between elementary
particles. The four fundamental interactions on which all physical phenomena
are founded are gravity, electromagnetic interaction, strong interaction, and
weak interaction. While gravity is necessary for the survival of stars, galaxies,
and planetary systems, it has no bearing on subatomic physics since it is
simply too weak to impact the interaction of fundamental particles. Some

properties of each interaction are summarized and given in table 1.1
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Table 1.1: Classification of Fundamental Forces of Nature.

Coupling Medi Mass
ediator Range
2
Types of Force Cor(ls‘;ant Theory Particles (GeV/c?) (meter)
Strong 1 Chromodynamics Gluon 0 1071
Electromagnetic 1/137 Electrodynamics Photon 0 infinite
Weak 10 Flavor dynamics W,Z My = 80 10718
Mz =91
Gravitational 103°  Geometro dynamic  Graviton 0 infinite

All interactions are explained by considering mediator boson particles
characterized by unit spin. In electromagnetic interactions, they are photons,
in strong interactions, gluons, and in weak interactions, the W*, W-, and Z°

bosons.

W-Boson 5
Mass =80 GeV/c

Z-Boson 5
Mass=91 GeV/c

Figure 1.1: Feynman Diagrams for Different Interactions.

Figure (1.1) gives examples of interactions between two particles via boson
exchange. These straight lines represent leptons and quarks. The wavy lines

represent photons while spirals represent gluons, and dashed lines represent

(13)



W and Z° bosons. Each of these three interactions has a specific charge
attached to it. An interaction occurs when a particle possesses between their
charges. The interactions are characterized by a factor called coupling
constant (o) which is defined in terms of electromagnetic interactions as the
ratio between potential energy and photon energy. The coupling constant is
maximum for strong interaction and decreases to zero for gravitational force.
In electromagnetic interactions, the intermediate boson particle is the photon
which has zero rest mass. As a result, it has an indefinite range. There is a
boson particle like photon, called gluon have no rest mass. The gluon particle
1s responsible for strong interaction. Photons have no electrical charge while
gluons hold a color charge responsible for interaction with one other. The W
and Z bosons, with masses of Mw =~ 80 GeV/c? and Mz~ 91 GeV/c?, are extra

ordinary heavy particles.[4]

1.4 Proton Structure

Electron is elementary particle which has a single charge e and has

. eh . .
magnetic momentum U, = o— associated to it and has been measured
e

experimentally [4]. When protons and neutrons were discovered in 1919 and
1931, respectively, they were thought to be like electrons. Proton was intended

to be point-like, with similar electron charge and mass m, as represented by:

eh
U, = P (1.1)
The expected value for neutron is zero because it is a neutral particle.
Un =0 (1.2)

Further measurements of the magnetic moments of these nucleons are
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b4, =-1.91304308 -

2mp Zmp

Uy = 2.7928444 (1.3)

which contradicts the expected values. It gives the first evidence to confirm
the presence of the nucleon substructure. The Second evidence is the analogy
between behavior of the measurements of scattering experiments for both
Rutherford scattering of alpha particles on gold nucleus and which carried for

electron on single proton. The scattering data is shown in figure (1.2).

B @ ®)
Atom has Proton has
| \ substructure o substructure
2 A2 &L
= \ \ &
S \ ® A
Z @ B AA
N s o A
- X
i \ \ AL
| | \ | | | | |

»
>

Scattering angle

Figure 1.2: Scattering Experiments of gold nucleus and proton.
The experimental data for both scattering processes is assumed due to
scattering off point-like particles with specific charge and mass to agree the
dashed lines, but it deviated. This confirms the proton is not an elementary
particle and has internal structure of partons latterly known as quarks which

are collected to give proton properties.

After discovering the substructure of nucleons (protons and neutrons), we now
live with the notion of the standard model, and it will be quickly explained
that all matter is made up of three types of fundamental particles: leptons,

quarks, and mediators. There are six leptons, each with its own charge (Q),
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electron number (L.), muon number (L), and tau number (L;). They are

naturally divided into three families:

Table 1.2: Lepton Classification.

L Q L. L, L.
e -1 1 0 0
Ve 0 1 0 0
u -1 0 1 0
Vi 0 0 1 0
T -1 0 0 1
2 0 0 0 1

There are six antileptons, which have all their signs inverted. For example, the
positron has a charge of +e and an electron number of -e. So, in total, there

are 12 leptons. Similarly, quarks are classified into three quarks called up

quark u has charge + % , down quark d has charge — % and strange s its charge

is —% . The theory of standard model proposed proton is composed of uud

combination and neutron is udd. The antiquarks take inverted sign.

The first explanation of strong interaction was by Yukawa theory (1934) to
explain the nuclear force [4]. He assumed a mediator boson called m-meson
of mass = 139 MeV/c? and coming with charge + e and natural. So, the issue
becomes, what particle is transferred between two quarks in a strong process
of nucleon? Now, nuclear force is explained by quark-quark interaction rather
than nucleon-nucleon interaction. The Standard Model has eight of these
mediators, known as gluons. Quarks and gluons carry color charges red,
green, and blue in addition to their anti-colors. Nucleons are a combination of
these colors to form colorless particles. Quarks should not exist as
independent particles. At high energy nuclear collisions of hadron-hadron,

hadron-nucleus and nucleus -nucleus, there is creation of a large number of
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mesons (combination of quark and antiquark) with high multiplicities
depending on collision energies. It explained by assumptions that there is
quark-quark, quark- gluon and gluon-gluon interactions. These are
responsible for the creation of high multiplicities of quarks and anti-quarks to
form hadrons that appear as new mesons which experimentally recorded. The
predicted mathematical theory which is used for this analysis is called

quantum chromodynamics.

In order to reach a complete description of the nuclear force we must study
the fine properties of the internal constituents of hadrons like proton and
neutron. This requires many scattering experiments using lepton particles as
electrons scattered off hadron such as proton. In this thesis, we will be
interested in electron-proton scattering in terms of theoretical predictions by
quantum electrodynamic theory at wide range of energy. Then comparing

these predictions with experiments.

In the next chapter we will study the theory of quantum electrodynamic and
scattering process using Feynman diagram and Fermi-Golden rule to derive

the elastic cross-section of electron proton scattering called Mott’s formula.
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Chapter 2

Scattering Theory
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2.1 Primitives

Scattering process between two bodies reveals information about the
microscopic details of the materials specially at high energy and scattering
among elementary particles against each other can reveal information about
the existence of new fundamental particles. Scattering theory is the
mechanical formalism in which one body is called projectile and the other is
target. Scattering process can be explained in different ways according to the
nature of both projectile and target in addition to the scattering energies. One
of these techniques is classical mechanics which treats bodies as rigid ones
with defined mass and momentum. There is another formalism, quantum
mechanics which deals with the wave nature of particles that accompanied the
particle during its motion. An important treatment called Quantum Electro
Dynamics QED that deals with high energy scattering among elementary
particles. There are two types of scattering one is the elastic scattering at
which the energy and nature for both projectile and target are conserved. The
other type is the inelastic scattering to which the conservation laws are not
applicable. Figure (2.1) gives a simple diagram of the basic idea of scattering
mechanism. A small projectile with specific physical properties (charge, mass,
energy) is directed towards a fixed target with a relatively large size and a
suitable value of impact parameter b (the distance between the centers
interacting particles). The projectile will interact in some way and deviate by
an angle called scattering angle 6, measured from the direction of incidence.
In the following sections, we will give short notes on some possible treatment

of this process according to different assumptions.[5]
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projectile

~
target

Figure 2.1: An illustration of hard sphere scattering.

2.2 Classical Mechanics in Scattering Theory

Classical theory of scattering considers both projectile and target are hard
spheres. They will not orbit each other but approach before the repulsive
potential U(r) causes them to move away and never meet again. This type of
behavior is shown in figure (2.1). The parameter r is the distance between the
center of scattering and the center of the target. In this mechanism a projectile
is directed from distance of infinity where r > R and U(r) = 0 in which there
is no forces exerts on its motion. The projectile doesn’t suffer any deviation
and continues along its direction. When projectile collides with the target
surface r = R it will be exerted by a force due to potential energy U(r) and
suffers a deflection by angle 0. The possible magnitudes of 6 depend on the
projectile energy, potential energy, and the impact parameter b. In this
mechanism, a collision between two particles conserves total energy; we
typically refer to the scattering as being elastic. The scattering angle is taken
to range anywhere between zero and n radians, where zero radians correspond
to absolutely no scattering, and = radians correspond to complete backward

scattering. Most scattering experiments involve firing many particles at a
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collection of targets, measuring the outgoing angles, and then comparing the
results against a set of statistical predictions. For this reason, there is some
additional terminology we need to develop beyond what we have been
discussing for far in the simple two-body problem, terminology related to the
concept of a cross-section. The concept of cross-section, as its name suggests,
is that of effective area for collision. In aiming a beam of particles at a target
which is much smaller than the beam, as in the Rutherford
scattering experiment, the cross-section takes on a statistical nature. To
understand the basic concept of a cross-section, we will start by considering a
very simple model of scattering, where the potential experienced by the
projectile is given by.

[0, 78

)

This type of scattering potential is known as hard sphere scattering and is
illustrated in figure (2.1). Notice that the solid sphere has an overall cross-

sectional area of
o=1r RZ (2.2)

There 1s a region of space, with cross-sectional area o, that projectiles cannot
pass through. If the incoming path of a projectile passes through this cross-
sectional area, it will be deflected off at some angle. For this reason, we define
o to be the scattering cross-section for this potential. The scattering cross-
section gives us an intuitive sense of how much area is blocked out by the
target during a scattering event. To see how this notion is useful to us, let’s
imagine that instead of one target, we have devised an experiment which in

fact contains many targets, as shown in figure (2.2).
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Figure 2.2: A sheet containing many hard sphere targets, each with a scattering cross-
section o.

Figure (2.2) shows a “head-on view” as seen by an incoming projectile. If we
describe the surface density of targets by the quantity n;,, , then the total
number of targets in the sheet is given by An,,, , where A is the total area of
the target assembly. If we now imagine that our target assembly contains many
targets, while still remaining dilute, and that we are interested in describing a
large number of scattering events, we can apply statistical considerations
when discussing the number of deflections that occur. For any given projectile
that is fired at the target assembly, the probability that it will hit one of the
spheres and scatter is given by the total cross-sectional area of all the targets,

divided by the total area of the assembly, so that.
_ Angyr 0
A

If we now imagine that the number of incident projectiles, we fire at the sheet

= Ntar 0 (2.3)

is Nine, then statistically speaking, the number of scattered particles, N,

should be given by

Nsc = PNijpc = Nipc Niar 0 (2.4)
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To derive an expression of the cross-section in terms of the experimental
parameters, let’s return to our single hard sphere target, and consider the
motion of a single projectile which strikes it with impact parameter b. This is

indicated in figure (2.3).

Figure 2.3: The motion of a projectile which strikes a hard sphere with impact
parameter b.

In this simple model, it is relatively straight-forward to determine the
scattering angle as a function of the impact parameter. The trick is to make
use of the fact that the angle of incidence on the surface of the sphere must be
the same as the angle of reflection, with respect to the surface tangent of the
sphere. This certainly seems “obvious” for scattering off of a hard surface,
although we could in fact prove this claim if we wanted to, based on angular
momentum and energy conservation. If we denote this angle as a (as is done
in the figure), then some simple geometric reasoning and some trigonometry

led us to the conclusion that.

b = R sina (2.5)
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This is due to the fact that various theorems in geometry about parallel lines
tell us that all of the angles marked as o must in fact be the same. Further study

of figure (2.3) also indicates that
=0+ 2a (2.6)

since these angles add up to a full 180 degrees. Combining these two results,

we have

T 6 7] b
b = R sin <2 2) R cos > = @ = 2 arccos (R)

Notice that this expression becomes undefined when b > R, which makes
physical sense in which there is no scattering. When we are interested in
particles that scatter only within an infinitesimal range of angles, say d6, what
range of impact parameters, db, is necessary to achieve such a scattering? The
result we have just derived tells us that if we want our projectile to scatter into
an angle 0 + dO, it must have an impact parameter.

badb=Rcos (24+%) ~ reos (2) = Bsin (%) ao
— oS (2 2)~ €0s (2) 25m<2> 2.8)

_p R (6 do
B 2)

Thus, we find that in order to increase the scattering angle by an amount do,

we must increase the impact parameter by db where, db is

R /8
db =~ sin ( 2) do

We can consider this quantity db as the amount of “infinitesimal cross-
section” which determines the area within which a particle’s path would need
to pass for it to scatter into a range of angles d6. Now it is possible to integrate
this quantity over all possible outgoing angles. Before performing this
integration, we need to admit the possibility of multiple projectiles coming

along multiple paths and scattering off one target in a wide range of angles
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from the central axis. This is illustrated in figure (2.4). In this case, the

infinitesimal amount of scattering area is not db, but rather.
do = 2mbdb (2.10)

The extra factor of 2xb comes from the circumference around the central

scattering axis. Integrating this expression over all angles, we find

0 0
[ do = —nRZfonsin (§> oS (§> df = —mR? (2.11)

Aside from a minus sign, this is simply the total cross-section for scattering
by the hard sphere.

0
«— do = 2nb db

dQ = 2msinf do

Figure 2.4 : The scattering of multiple projectiles off of a hard sphere, all with an
impact parameter which lies between b and b + db.

That is to say, the result for b as a function of the scattering angle 6 did not
depend on the angle around the central scattering axis ¢. In three dimensions
the impact parameter and the infinitesimal do are function of both angels 6
and ¢. The formed area corresponding these angles described by solid angle

d() and shown in figure (2.5).
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Length =s Area =A

AQ = A/r?

Figure 2.5: a.) The definition of an angle in two dimensions. b.) The definition of solid
angle in three dimensions.

In two dimensions, the angular difference between two points on a circle can

be defined as

AG =2 (2.12)

where s is the arc length between the two points, and r is the radius of the
circle. In three dimensions, we can similarly define the amount of solid angle
corresponding to a patch of area on the surface of a sphere. Analogously to

the two-dimensional case, the amount of solid angle is defined as

aq=2 (2.13)
7-2

The unit of solid angle is the steradian, as opposed to the radian which
describes regular angles. Notice that since the surface area of a sphere is 4mr?,
the solid angle corresponding to all possible directions in three-dimensional
space is given by 4x steradians. In particular, we will often be interested in
knowing the amount of infinitesimal solid angle surrounding a set of angles 0
and ¢ which describe a spherical coordinate system. The volume element is
given by
dV = r2 sinf dr d6 d¢ (2.14)
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so that the infinitesimal amount of area on the surface of a sphere with radius

r is given by

dv
dA = ——=1?sin6 do d¢ (2.15)

Thus, the infinitesimal amount of solid angle surrounding a given direction in

spherical coordinates is given by
dA
dQ = — = sinf df d¢ (2.16)
r

Having introduced the idea of solid angle, we are now ready to define

differential cross-section D(0), which is illustrated in figure (2.6).

(6, 9)

~—> T target
Figure 2.6 The notion of a differential cross-section.

We again imagine that we have fired a sequence of projectiles at a large sheet
full of many targets, with some density n,. Instead of asking about the total
cross-section for scattering, we can ask about the infinitesimal amount of
cross-section do that is required for a particle to scatter off at some angle into

a small amount of solid angle d€2. By the same reasoning as before, if we think
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in statistical terms, then the total number of particles scattered into this small

region of solid angle should be

Nsc(dQ) = Nipe Near do(d2) (2.17)
The total cross-section can then be found by integrating.
do
—fdo=( %0 (2.18)
o=[do={ 70 d
The quantity appearing in the integral,
do
D(O) = — (2.19)
0) =5

The results of scattering experiments cannot determine the initial impact
parameter of a given projectile, but they can detect the number of particles
being scattered into a certain region of solid angle with great accuracy. The
differential cross-section can be determined from experimental measurements
on the number of incident particles, the density of targets in our material, and
the number of particles scattered off at some angle. In many areas of physics,
a given model describing the interactions between particles will result in a
theoretical prediction for the differential cross-section in a given experiment.
This prediction can then be tested against experiments, in order to verify the
given model. In this case, assuming that we have found the function b (0), the

amount of infinitesimal scattering cross-section will again be given by
do = 2m b db (2.20)

In this case, the total amount of solid angle, integrated over all values of @, is
given by

dQl = 2m sinf df (2.21)
Dividing these two expressions, we have
do b |db
= =—|[— (2.22)
D(6) dQ sinf |d6
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where we have added the absolute value signs to ensure that the result is

positive. Notice that for the case of hard sphere scattering, this gives.

RZ
p(o) =~ (2.23)

which is completely independent of angle (as we would expect for a sphere).
Integrated over all solid angles, we find.

RZ
4

RZ
0 =—f dQ=—-[sin6 db d¢ = nR? (2.24)

2.3 Coulomb Scattering

In the following section, we will be concerned by the Coulomb scattering
which is sometimes called Rutherford scattering. In this type of scattering,
both projectile of atomic number Z; and target Z, are electrically charged. The
projectile reaches the closest approach of the target before it deflects away
due to the electrical potential of the target. It can be shown in figure (2.7) the
projectile has the chance to get closer to the target then it starts bending away
after it suffers an electrical potential from the target making an angle 6
measured from the initial direction. The conservation laws of momentum are

applicable in this mechanism. [6]
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Z,e Scatterer
Figure 2.7 : A schematic diagram represents Coulomb scattering.
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0 (2.27)

Ap = 2p sin (=
b= ()
|AB| = Ap (2.28)

The projectile suffers a change in the direction resulting from Coulomb
repulsion force from target and directed in z axis which known as:

L ZiZye® 7 (2.29)
dtey, 1?1

where e is the electron charge. The force can be written from the second law

F=

of Newton.

- d_> -
F=22—ap=[Fat (2.30)
dt
(2.31)

AP = [ Fdt = Ap = [ F cos¢ dt

Z1Z262 1 (2 32)
P= e | —cose dt

In this integral there are two varying parameters which made it difficult to

calculate so we will use the laws of conservations of angular momentum

because the scattering is elastic. Since the angular momentum L is

d¢ (2.33)

L=l =mr:—
L] It
In the initial condition, there is no angular velocity it is linear so the angular

momentum can be written as
L = mvyb (2.34)

Since the angular momentum is conserved

2
mre—=mvgh = — = ——
dt 0 r2  vyb

Thus, the change of momentum is
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- e, fﬁcos - 4me, =fv0—bcos¢
Z,7,6% 1 o, (2.36)
= — d
4, vobf‘l’ cosp d¢

The limits for integration are defined by
b1+ +0 =1 & ¢ =—¢,
1 1
So ¢, = _E(ﬂ_g) & ¢, =E(7T_9)

The negative and positive ¢ are equal in magnitude. the solution to these

(2.37)

equations is

Z.Z,e%> 1 (%2
Ap = 2 d (2.38)
P 4mey vob jdn cos¢ d¢
Z17,e* 1 _ ,
= 4z, _vob (sing, — sing,)

Z1Z262 1 . (T[ - 0)
= Sin

4mtey vob 2
_ Z1Zye* 2 (9)
~ 4me, vob €os 2

Apply the conservation of momentum then combine two equations 2.27 and
2.38

_ Z1Z,e% 2 0
Ap = 2psin (0/2) = éllﬂeo mcos (E) (2.39)

This equation gives the relation between the impact parameter and the

scattering angle. Then we need to get %
Z1Z,e* 1 1
p = 2142

4mte, pv, tan (

(2.40)

N @

)
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Z1Zp e

Let ¢ = ——2—
4T EYP Vy

So b = c cot (g)

db = ) (9) do
=—cese |5 ) 5
9
| c csc? 2)
61 - v @
2
2 sin 2)
From the equation of differential cross-section (2.22)
do
dQ  sin(0) 1d6
do b c

ETOR sin(0) 5 ;2 (%)

do b c

o~ 2 sin (g) cos (g) 2 sin? (g)

Substitute with b and c to get the final equation.

do Z1Z, e*
dQ

2.41)
0 (

2 ¢ 2m2 4 cind (2
64 4 £y~ M= v* sin (2)

This equation is called the Rutherford scattering formula. This formula agrees

with experimental data for scattering alpha particles off gold nucleus up to

27.5 MeV as shown in figure (2.8).[6]
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Figure 2.8: Limitations of Rutherford formula.

For higher energy other theoretical techniques will be applied such as
quantum theory of scattering and will be explained in detail in the following

section.

2.4 Quantum Scattering Theory

In the quantum theory of scattering[7], we imagine an incident particle
associated by a plane wave, traveling in the z direction, which encounters a
scattering potential, producing an outgoing spherical wave as shown in figure
(2.9). That 1s, we look for solutions to the Schrodinger equation of the generic

form.
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ik
e™ (2.42)

, forl
r} orlarger

Y(r,0) = A {eikz + £(8)

The spherical wave carries a factor of % because this portion of || must go

like to conserve probability and the scattering amplitude f(8). The wave

number k is related to the energy of the incident particles in the usual way

_ VZmE (2.43)
~  h
er e ikr
e
7] A

|

4 |\

Figure 2.9: Scattering of waves; an incoming plane wave generates a spherical wave.

The whole problem is to determine the scattering amplitude; it indicates the
probability of scattering in each direction 6, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle,
traveling at speed v, passes through the infinitesimal area do, in time dt, is

(see figure 2.10)
dP = |WPincident |2dV = |A|*(vdt)do. (2.44)
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Figure 2.10: The volume dV of incident beam that passes through area do in
time dt.

But this is equal to the probability that the particle scatters into the

corresponding solid angle:

|AI|f?
dP = |¢scattered |2dV = T'—z (Udt)?"zdﬂ (245)

from which it follows that do = |f|*dQ
do
D(9) 70 |f(6)]

Evidently the differential cross-section which is the quantity of interest to the
experimentalist is equal to the absolute square of the scattering amplitude. It
is obtained by solving the Schrodinger equation. There are different
mathematical analyses for this solution to obtain the scattering amplitude
f(8). First, the partial wave analysis using the phase shift. Second, the Born

approximation.

(a) Partial Wave Analysis

In partial wave analysis, the wave function 1 (r, @) takes the form

r

ikr
Y(r,0) =~ A {eikz + £(6) i } (2.47)

and the scattering amplitude is obtained in terms of partial wave amplitudes

as
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f(8) =50 (2¢ + Da,P,(cos 6) (2.48)

where P, is the f-state Legendre polynomial and a, is the partial wave

amplitude. The differential cross-section D (80) is.

D() = If(O)? 2.49)
D(O) =Y,y (2¢+1)(2¢" + 1)a,a,Py(cos 8)P,y(cos 0)

and the total cross-section is

o =41y, (2€ + 1)|a,|? (2.50)
In the phase shift analysis, the scattering amplitude of the reflected wave is
same as that of the incident wave|B| = |A|, due to conservation of probability.
But they have not the same phase. The phase shift § between the incident and
scattered waves depending on magnitude of potential. In addition, it depends
on the nature of the scattering center. The solution of Schrédinger equation
takes the form

NCIERY

©® ~
¥ 2ikr

[et0er200 — (=1)fe ™" |Py(cos ) (5 51

at (V(r) #0)
The first term in bracket represents the outgoing wave with the phase shift §;.
The combination of the two methods of scattering analysis gives the partial
wave amplitude a, with the phase shift §; as
— i (821:5( _ 1) _ lengSin (8, (2.52)
2ik k
and the scattering amplitude f(8) becomes

ap

1% |
f() = EE (2€ + 1)e™¢sin (8,) Py (cos 6) (2.53)
£=0
The scattering cross-section becomes
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4 -
o= ﬁz (2 + 1)sin? (5,) (2.54)
£=0

where l = 0,1, 2, ....

(b) The Born Approximation
The Born approximation [7] is a mathematical treatment to solve Schrodinger

equation at points of scattering center where time independent is
2

VY + VY = By
The previous equation can be written as
where
VZ2ZmE 2m
= - and Q = ?Vl,b (2.57)

This has superficial appearance of the Helmholtz equation; note, however, that
the inhomogeneous term (Q) itself depends on 1. Suppose we could find a

function G(r) that solves the Helmholtz equation with a delta function ‘source’
(V2 + k»)G(r) = §3(r) (2.58)

then we could express ¥ as an integral:

P(r) = j G(r —19)Q(r)d’r, (2.59)
For it easy to show that this satisfies Schrodinger equation

(v2+k2)¢(r)=f [(V2 + kD)6 (r — 1)]Q(r)d’r e
2.60

= f 83 (r —rp)Q(ry)d*ry = Q(r)
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G (1) is called the green function for the Helmholtz equation. (In general, the
green function for linear differential equations represents the response to delta

function source. The solution of Green function is analysed and given as

ikr

- [(mer) — (mimetr)| = -2 (26D

G(r) = 8mlr

and general solution of schrodinger equation takes the form

m ik|r—rg|
() = o(r) — 5

2.62
e LAUOTTCY I

where 1, satisfies the free-particle Schrodinger equation,
(V2 + k®)py =0 (2.63)

It is looks like an explicit solution to the Schrodinger equation (for any
potential) which is too good to be true.
In the case of scattering, we want.

Po(r) = Aetv? (2.64)

representing an incident plane wave. For large r, then,

ikr

. J e” kT v (ry) Y(ry) d3ry.  (2.65)

. e
P(r) ~ Ae” —

21h?

This is in the standard from (equation 2.47), and we can read off the scattering

amplitude

f e~ kT 17 (ry) Y(r,) dr, (2.66)

m
f6.8) = =5 72a

This is exact. Now we invoke the Born approximation: Suppose the incoming
plane wave is not substantially altered by the potential; then it makes sense to

usc

P(Iy) = Po(ry) = Ae = A eik'To (2.67)
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where K’ = kZ inside the integral. (This would be the exact wave function, if
V were zero; it is essentially a weak potential approximation. In the Born

approximation, then,

f6,¢) ~— J e!&'1)T0 17 () 3y, (2.68)

21h?

The two vectors k and k' are the wave numbers of the incident and outgoing

waves respectively and are shoen in figure (2.11).

k' = k#

Figure 2.11: Two wave vectors in the Born approximation: k’points in the incident
direction, k in the scattered direction.

For low energy (long wavelength) scattering, the exponential factor is

essentially constant over the scattering region, and the Born approximation

simplifies to

f6,¢)~— f V(r) d3r (low energy) (2.69)

m
2mh?
For spherical symmetrical potential, V(r) = V(r) but not nessairly at low

energy and the Born approximation again reduces to a simpler form,
k=K —k (2.70)

And let the polar axis for the r, integral lie along , so that
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(k' —K) - 1y = Kk 1, cosb,. (2.71)
Then
f(0) = —

m :
o f etx10c0s 0o /(1) 12 sinf, dry dBy depy.  (2-72)
The ¢, integral is trivial (2m), and the 6, integral is one. Dropping the

subscript on r, we are left with

2m [ - : (2.73)
f(0) = — P j r V(r) sin(kr) dr (spherical symmetry). :
0

The angular dependence of f(0) is carried by k; as shown in figure 2.11.

k = 2k sin <§) (2.74)

An application to Born approximation is Rutherford scattering between two

charged points q; and q, at Couomb's potential. The Born approximation gives

2mpB (° _ . 2mp
f(0) = — - jo e M sin(kr) dr = — G2 + 1) (2.75)

where ff and u are constants. If we put f = q,q,/4me, and u =0 the

scattering amlitude is

2maq, q,
9) ~ — 21z (2.76)
1(6) 4meyh?Kc?
or (using Equations 2.74 and 2.57):
414>
f(0) =— 5 (2.77)
16meyE sin? (7)

the differential creoss-section is the square of this
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do 414> (2.78)

da 16meyE sin? (g)

which is precisely the Rutherford formula. It happens that for Coulomb

potential classical mechanics, the Born approximation, and quantum field

theory all yield the same result. [7]

2.5 Quantum Electro-Dynamics

In this section, we will investigate the scattering process in terms of quantum
electrodynamics QED. This theory describes the electromagnetic interactions
between leptons (like electron) and hadrons (like proton, neutron, muon). The
following are the technical issues that must be addressed in any estimation of
the cross-sections in terms of their transition rates: First, is dealing with a
many-particle situation. Second, is handling a relativistic problem. We
calculate the one-particle wave equations for free leptons (or quarks) and then
investigate the scattering of one particle by another. At first glance, it is
unexpected that single-particle wave equations may be used to explain
interactions in which particles can be created and annihilated. QED theory is
applied in terms of Feynman diagrams, using Golden rules where the
exchange boson is photon (y) with energy q. In the following sections, we will

explain the mathematical tools used in QED in terms of relativistic mechanics.

2.6 Lorentz Covariance and Four-Vector Notation

The fact that the basic laws have the same form in all Lorentz frames, that is,
reference frames with uniform relative velocity, is a cornerstone of modern
physics. Lorentz covariance describes the fundamental equations. The theory

of special relativity is founded on the assumption that the velocity of light, c,
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1s constant in all Lorentz frames. A Lorentz transformation connects the
coordinates of two such frames. ¢t? - x? is the basic invariant. A four-vector
is defined as any collection of four values that transform as (ct, x) under

Lorentz transformations. We use the abbreviation.
(ct,x) = (x° x1, x2,x3) = x# (2.79)

According to special relativity theory, the total energy E and momentum p of

an isolated system transform as components of a four-vector.

(E'P) = (p°,p*,p% %) = p* (2.80)
c
with the basic invariant (E*/c?) - p%. The simplest system is a free particle, for

which

E_Z_ p2 (2.81)

where m is the particle's rest mass.We will now return to the usage of natural
units with ¢ = 1. We may apply the scalar product of two four-vectors in three-
dimensional space, just as we can in two-dimensional space. A* = (A°, A) and
B* = (B’ B)

A-B=A°B°—A-B (2.82)

which is left invariant under Lorentz transformations. Due to the minus sign,
it is convenient to introduce a new type of four-vector, A, = (A° - A), so that

the scalar product is

A-B=A,B* = A*B, = g,,A*B" = g"YA,B, (2.83)

Here, we have introduced the (metric) tensor g,, which is defined by goo = 1,

g11 = g»n = g33 = - 1, other components = 0
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41 0 0 0
(0 -1 0 0 (2.84)
Guv 0 0 -1 0
0o 0 0 -1

Upper (lower) index vectors are called contravariant (covariant) vectors. The
rule for forming Lorentz invariants is to make the upper indices balance the
lower indices. If an equation is Lorentz covariant, we must ensure that all
unrepeated indices (upper and lower separately) balance on either side of the
equation, and that all repeated indices appear once as an upper and once as a
lower index. the following are examples of scalar products of two four vectors

positions X and momentum p are

ptx, =p-x=Et—p-X (2.85)

And also, for two momentum vectors
PYP, =p -p=p* =E? —p? (2.86)
These quantities are Lorentz invariants. For a free particle, we have p? = m?.
We say that the particle is on its mass shell. The collision of two particles,
each of mass M, is viewed in a Lorentz frame in which they hit head-on with
momenta equal in magnitude but opposite in direction. We speak of this as the
"center-of-mass" frame (though the name "center-of-momentum" would be

more appropriate).
The total energy of the system is E¢p
s = (p1 +02) (@1 + 0" = (01 +P2)° = Eln (2.87)

If the collision is viewed in the "laboratory" frame where one of the particles

is at rest, then show, by evaluating the invariant s, that the other has energy.
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E
Ep = ﬁ_ M (2.88)

This study shows that colliding-beam accelerators have a huge advantage

compared to fixed-target accelerators in terms of reaching a given total center

of mass energy +/s. List some of the benefits of fixed-target accelerators. It is
worth noting that the space-like components of A* and A, are A and - A,

respectively. The exception is

0 0
n (9 _ _(9 (2.89)
J <at’ V) and 0, (at’v)

which can be shown to transform like x* = (t, x) and x,= (t, -x). respectively.

Thus. the covariant form of E — ih%, p - —ihVis

pH = | gH (2.90)
From 0, and 0¥ we can form the invariant (D'Alembertian) operator
0% =9, 0" (2.91)

In classical quantum mechanics Schrédinger equations can be modified in

relativistic which is known as Klein-Gordon equation.

2.7 The Klein-Gordon Equation

Wave equation violates Lorentz covariance and is not suitable for a particle
moves in a relativistic motion. Starting from the relativistic energy-

momentum relation equation. (2.81)
E? = p? + m? (2.92)

Making the operator substitutions £ — ih%, p — —ihV into Schrodinger

equation, we obtain
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_?;T(f_l_vz(p m2¢ (2.93)
It is known as the Klein-Gordon equation (but might be expressed more
precisely. Known as the relativistic Schrodinger equation). The complex
conjugate equation and the Klein-Gordon equation are multiplied by - i$ and

- 1d*, respectively, then we get.

at [ (d) B_(f —¢ a(p*)] + V- [-i(¢"Vp — V)] =0 (2.94)
j

p

When comparing with the variables in square brackets to the equation of
continuity equation (2.95) where p is the probability density and j is the flux
density

9
% L y.izo (2.95)
at

The probability and flux densities can be identified. For instance, consider a
free particle with energy E and momentum p that is characterized by the Klein-

Gordon solution.

¢ — Neip-x—iEt (2.96)

We find from equation (2.94) that the probability density p and the current
density j are given as

= i(=2iE)|N|*> = 2E|N|? (2.97)
j = —i(2ip)|N|* = 2p|N|? (2.98)
We can observe that the probability density grows in proportion to E, the

particle's relativistic energy. The Klein-Gordon equation yields when the

D'Alembertian operator equation (2.91) is used.
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(0% + m?¥)¢p = 0 (2.99)

Moreover, the probability and the flux densities form a four-vector.

j* = (p,j) = i(¢p" 04 — ¢p 0H¢*) (2.100)
which satisfies the (covariant) continuity relation:
d,# =0 (2.101)

Taking the free particle solution

¢ = Ne~P* (2.102)
we have

j* = 2pH|N|? (2.103)
We noted that the probability density p is the time-like component of a four-
vector; p is proportional to E. This result may be anticipated since under a
Lorentz boost of velocity v, a volume element suffers a Lorentz contraction
d3x - d3x V1 —v?%; and so, to keep p d’x invariant, we require p to
transform as the time-like component of a four-vector p = p V1—v2 . To

obtain the energy eigenvalues of the Klein-Gordon equation must substitute

of (2.102) into (2.99).

1
E = +(p? + m2)s (2.104)

As a result, we have negative energy solutions in addition to acceptable E > 0
options. This appears to be an unavoidable trouble at first glance, because
transitions to lower and lower (more negative) energies might occur. Another
problem is that the E < 0 solutions have a negative probability density from

equation (2.97). To summarize, the problems are E < 0 solutions with p < 0
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This problem cannot be simply ignored. We cannot simply discard the
negative energy solutions as we have to work with a complete set of states,

and this set inevitably includes the unwanted states.[2]

2.8 Dirac Equation

To avoid the negative energy problems, Dirac proposed a relativistic wave
equation linear in 0/0t and V. He was successful in solving the problem of the
negative probability density, and the equation also described spin -1/2
particles, which was an unexpected bonus. However, E <0 solutions did arise,
as seen in figure (2.12) energy spectrum for a free Dirac electron. Dirac
avoided negative energy solutions by employing the exclusion principle. He
proposed that the vacuum is an endless sea of E < 0 electrons, and that all
negative energy states are inhabited. The exclusion principle now prevents
positive energy electrons from collapsing into lower (negative) energy levels.
However, a "hole" in the sea may be created by exciting an electron from a
negative energy (- E) state to a positive energy (E') state, as shown. The lack
of a charge - e and energy - E electron is interpreted as the existence of a
charge +e and energy +E antiparticle (a positron). As a result of this excitation,

a pair of particles are produced.

e—(EI) + e+(E) (2105)
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A
— - Figure 2.12: Energy level spectrum for the electron.
L}.i Dirac's picture of the vacuum has all the negative
" energy states occupied. It shows two states per level to
o4 account for the two spin states of the electron.
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It obviously demands energy E + E'> 2m (see diagram). The Dirac equation
was thought to be only valid relativistic wave equation until 1934. Pauli and
Weisskopf reintroduced the Klein-Gordon equation in 1934 by introducing the

charge -e into j* and interpreting it as the electron's charge-current density.

jH = —ie(¢p* OHp — ¢ 0 ™) (2.106)
Now that p = j° reflects a charge density rather than a probability density, the
fact that it can be negative is no longer an issue. In certain ways, as we will
see later, the E < 0 solutions can thus be considered as E > 0 solutions for
particles of a reverse charge (antiparticles). Unlike "hole theory," this
interpretation applies to bosons as well as fermions. The Dirac Sea cannot be
filled with bosons because there is no exclusion principle to stack the particles.
To build the antiparticle concept and introduce Feynman diagrams, it is
necessary to initially neglect the difficulties caused by electron spin. To begin,
we extract the Feynman rules for "spinless" electrons and employ them to
compute scattering amplitudes and cross-sections for interacting particles.
Only then do we resort to the Dirac equation and the Feynman rules for the
physically relevant situation of spin 1/2 electron electromagnetic

interactions.[2]
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2.9 The Dirac Equation and Spinors

In this section we develop the appropriate wave functions for fundamental

fermions and bosons. In covariant form, Dirac equation can be written as:

0 -

(iyoa +iy. V — m) Y=0 (iy*9, —m)yp =0 (2.107)
where we have introduced the coefficients y* = (v°, ¥) = (v°, v%, ¥%, ¥°), which
must be determined. Dirac equation is simply four coupled differential
equations, describing a wavefunction y with four components. To find gamma
matrices y*, u =0, 1, 2, 3, we first multiply the Dirac equation by its conjugate

equation:

a — a —
vt (~ir' =7 7 —m) (i s+ 7 F—m)p=0 2109

it 1s consistent with the Klein-Gordon equation, this leads to the following

conditions on the y":
G2=1, () =-1, vy + y'y* =0 forp# v
withi = 1,2,3 wv=20123

Equivalently in terms of anticommutation relations and the metric tensor

equation (2.84):
v y=vHh vV + vy, y# = 29" uv=0123

The simplest solution for the y*, that satisfies these anticommutation relations,
are 4 x 4 unitary matrices. We will use the following representation for the y

matrices:

O S CR B
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Where and

_(1 0 i _(-1 0
1= (0 1) = ( 0 —1)
where I denote a 2 x 2 identity matrix which described by unit diagonal

matrices, 0 denotes a 2 x 2 null matrix, and the ¢ are the Pauli spin matrices:

_ (0 1 _ (0 =i _(1 0
Ox = (1 0) Iy = (i 0) 2 = (0 —1)
Let’s write out the gamma matrices in full:
1 0 O 0 0O 0 0 1
Y0 = 01 0 O yl= 0O 0 1 0 (2.110)
0 0 -1 O 0 -1 0 0
0 0 0 -1 -1 0 0 0
0 0 0 —i 0 01 O
2_[0 0 i O s_( 0 0 0 -1
v 0 i 0 0 "“1-1 00 o
—-i 0 0 O 0 1 0 O

Please note, despite the p superscript, the y* are not four vectors. However,

they do remain constant under Lorentz transformations. Finally let’s write out

the Dirac Equation in full:

9 . 9 o 9
bog—™ "oz ox ' dy
9 9 9 1
0 AL e 0
at ox dy 0z Yl_ (0 (2.111)
9 9 a2 . w37\ o
e Yox "oy ot Pt 0
a+a d 0 0
ax | ay 9z e ™

This form will be used in further calculations in scattering research for

electron-proton scattering.
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2.10 Spinors

The Dirac equation describes the behavior of spin -1/2 fermions in relativistic
quantum field theory. For a free fermion the wavefunction is the product of a
plane wave and a Dirac spinor, u(p"):

w(xu) — u(pu) e—ip-x (2.112)

Substituting the fermion wavefunction, y, into the Dirac equation:

For a particle at rest, P= 0, we find the following equations:
(i 2~ m) = G°E —mp = 0
ot (2.114)
A (ml 0
Eu = ( 0 —ml) u
The solutions are four eigen spinors:
1 0 0 0
1_(0 2 _ 1 3_ [0 a_ |0 (2.115)
“Ilo) Y Tlo) Tl Y THo
0 0 0 1
and the associated wavefunctions of the fermion is:
1 _ ,—-imt,,1 2 _ ,—imt,,2
Y= Y= (2.116)
.(p3 — e+imtu3 lp4 — e+imtu4

Note that the spinors are, however, not four-vectors representation but they
are 1 x 4 column matrices, with four possible states. We would expect only
two spin states for a spin 1/2 fermion. The change of sign in the exponents of

the plane waves in the states y* and y* describe two different spin states (1
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and |) with negative energy E = —m. and explained with details in the

following section.

2.11 Spinors for Moving Particles

To describe the negative energy states, Dirac postulated that an electron in a
positive energy state is produced from the vacuum accompanied by a hole
with negative energy. The hole corresponds to a physical antiparticle, the
positron, with charge +e. Another interpretation (Feynman-Stuckelberg) is
that the E=—m solutions can either describe a negative energy particle which
propagates backwards in time, or a positive energy antiparticle propagating

forward in time:
e "UEE)()=(=P)(-X)] = g-i[Et-pX] (2.117)

For a moving particle, P # 0 the Dirac equation becomes [using equations
(2.107) and (2.109)]:
_(E-m —G-B\ ) _ 2.118

(yﬂp#—m)(uAuB) —< P —E—m) (UB) =0 (2.118)
where us and up denote the 1 x 2 upper and lower components of u
respectively. The equations for ua and up are coupled:
_ 0P _ 0P (2.119)
“E-—m" VBT rmt

The solutions are obtained for u' and u? in which describe an electron of

Uy
energy E = + ’mz + p?, and momentum P and the wave functions represent
as

Pl = ul(ph)e = Y2 =ut (e () 190
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1 0

, 1
ut = \ pz/(E +m) Y (pe—ipy)/(E+m) (2.121)
(px +ipy)/(E +m) —pz/(E+m)
—pz/(—E + m) (—=px + ipy)/(—E + m)
(—px — ipy)/(—E +m) ut = p,/(—E +m) (2.122)
1 0
0 1

The u® and u* of equation (2.122) describe a positron of energy E =

— ,mz + p?, and momentum P . It is usual to change the spinors u’ and u*

into v*(p) = u’(—p) and v(p) = u*(-p) to describe these positive energy

antiparticle states, E = + /mz + ?

Pz
E+m
ve(ph) = (—pt) = | Pt iPy)
E+m

1 (2.123)
0

¢3 = UZ(pM) e X — u3(_pu) et(-p)x

(px - ipy)
(E +m)
vi(ph) s ut(-pH) =| Pz__
(E +m)
0
1

Pt = vi(pH) e = ut(—pH) el
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the u# and v are the solutions of:

(iy#p, —m)u=0 (iytp, + m)v =0 (2.124)
The two different solutions for each of the fermions and antifermions
correspond to two possible spin states. For a fermion with momentum P along
the z-axis, Y = u/(p*) e P~ describes a spin-up fermion and ¥ =u’(p*) e >
describes a spin-down fermion. For an antifermion with momentum P along
the z-axis, Y = v/(p*) e P~ describes a spin-up antifermion and ¥ =V?(p*)e **

describes a spin-down antifermion.

u! == +ve

Particle
u? - ' - —ve

.

v! . = tve

Anti-particle

2 —

\% —= - ve

Figure 2.13: Helicity eigenstates for a particle or antiparticle travelling along the +z
axis.

The u', u?, v' and v? spinors are only eigenstates of S, for momentum p along
the z-axis. These states take equal probabilities. For our purposes it makes
more sense to project the spin along the particle’s direction of flight, this

defines the helicity, h of the particle.

y

_ o (2.125)
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For a spin 1/2 fermion, the two possible values of h are h=+1 or h=-1. We
call h = +1 right-handed and h = —1 left-handed. The possible states of
particles and antiparticles are shown in figure (2.13). As we will see, the
concept of left- and right-handedness plays an important role in calculating
matrix elements and in the weak force. If it is also worth noting here, massless
fermions, are purely left-handed (only u? and h = -1); massless antifermions

are purely right-handed (only v! and h = +1). [8]

2.12 Fermion currents
We need to define a Lorentz invariant quantity to describe fermion currents
for QED. We define the adjoint spinor ¥ = y'y’, where y' is the Hermitian

conjugate (complex conjugate transpose) of i:

"
|,
=1y,

0, (2.126)

Yt =@ = @1, ¥3,¥591)
=9y = @193, —¥3, —¥i)
The adjoint Dirac equation can be formed by taking the Hermitian conjugate

of the Dirac equation (2.107), and multiplying it from the right by v°:

(0, y* +my =0 (2.127)
Multiplying the adjoint Dirac equation (2.127) by 3 from the right, (or the

original Dirac equation by 1 from the left) gives the continuity equation which

is described by Lorentz invariant quantity.
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0, (Py* ) = Py (9,9) + (8,9)y e = 0 (2.128)
or d,j¥=0 (2.129)

Where j* 1s the four-vector fermion current:

j* =gy = Gy, 9v) = (p.]) (2.130)
and p is the probability density:
p=j%=yPyy = ¢ty (2.131)

The fermion current j* = 1y*y and it has the properties of a Lorentz four-
vector, which is what we required. Additionally, the probability density p is
positive definite for all four possible spinor states. This is only true if we use

the adjoint form with 1

The previous discussion is characterized for spin 2 fermions like electrons
and mesons. For integer spin particles (Bosons) like photons, there are three

spin projections corresponding to three possible helicity states s = +1, 0, —1.

s = 0 1s known as longitudinal polarization, and the s = 1 are transverse
polarizations (actually left and right-handed circular polarizations). For
massless particles, the s = 0 state does not exist. Plane wave solutions can be
written as

w — E”(p; S) e ipx (2.132)

where €#(s) is the polarization vector, which depends on the spin, s, of the

photon. The polarization vector is Lorentz gauge invariant quantity:

Pt =0 (2.133)
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In scattering theory by QED, the exchange virtual boson like photons have
q? # 0, and thus can have both longitudinal and transverse polarization. This

1s also true for the massive W and Z bosons.[8]

2.13 Feynman Diagrams

In QED theory[4], the electromagnetic interaction is represented by Feynman
diagram which is a powerful technique that simplifies the mechanism of
interaction. In addition, it is used to calculate the cross-section of scattering
process by introducing a very important parameter which is called matrix
element M, that indicates the probability of this interaction to happen. Also,
it is called scattering amplitude which connects between initial and final states
of scattering process. It describes the interactions between boson particles
with both projectile and target and carries information like mass, energy,
momentum, and spin. The following figure gives a simple form of Feynman

diagram of scattering process of two electrons.

Time Flow

Figure 2.14: shows the scattering process for two electrons in terms QED using
Feynman diagram.

In the previous chapter we explained the basic assumption of QED to describe
the interactions in terms of exchange boson. In this example it will be photon
as a mediated boson between interacting particles. Here, two electrons enter

the interaction then a photon passes between them. It is not possible to say
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which electron emits the photon and which one absorbs. In classical theory,
this interaction is called Coulomb repulsion of like charges when they are at
rest. In QED this process is called Moller scattering. The Feynman diagram
consists of main parts they will be illustrated as listed below.

1- Fermion lines, it is the line with arrow indication. If the arrow takes the

time flow it belongs to fermion propagates in time. Otherwise, it
belongs to anti-fermion.

Fermion

2- Propagator wavy line, it is the line which indicates the exchange boson
for the interaction of two electrons. In this case photon represents
electromagnetic interaction. It is a photon.

L W N N

Photon line
3- Vertices represent the places where particles are created or annihilated.
In the case of electromagnetic interaction, the vertex couples a photon

to a charged particle with strength proportional to its charge.

e e
Vertex
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As a conclusion, these diagrams consist of lines representing particles while
vertices describe which particles are created or annihilated. The diagrams
represent transitions between well-defined 4-momentum states that include
the contributions from all possible paths in both time and space. This means
that it is not meaningful to ask about the time-ordering of any channel of the
internal events, while all possible time-orderings are necessarily included.
Each Feynman diagram actually stands for a particular number, which can be
calculated using the so-called Feynman rules. It takes different processes as

the following:

Firstly, we draw all the diagrams that have the appropriate external lines (it

may contain initial channel with two vertices as shown in figure (2.15).

Figure 2.15: Feynman diagram with two vertices.
and may contain another channel with four vertices as shown in figure (2.16)

and infinitely so on).
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Figure 2.16: Feynman diagram with four vertices (containing a loop).
It is possible to evaluate the contribution of each diagram and add it all up.
The sum of all possible Feynman diagrams with the given external lines
represents the actual physical process. The total Feynman diagrams give a
more accurate description of the interaction with more vertices. Each vertex
introduces a constant fraction factor called fine structure constant a = (e? /hc)
so the higher vertices diagrams become less and less effective. Because this is
such a small number, diagrams with more and more vertices contribute less
and less to the final result and these diagrams may be ignored depending on
the accuracy you need. In fact, in QED it is rare to see a calculation that
includes diagrams with more than four vertices. The Feynman rules enforce
conservation of energy and momentum at each vertex, and hence for the

diagram as a whole.

Secondly, to determine the scattering cross-section, by calculating the matrix
element using Feynman diagrams then inserting it into Fermi’s golden rule
relation of two body scattering as
do _ (E)Z SIMI* |pyl (2.134)
8/ (Ey+ E3)? |pil

aa
where |Pf| is the magnitude of either outgoing momentum and |P;| is the

magnitude of either incoming momentum. S is a product of statistical factors:
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1/3! for each group of j identical particles in the final state. Now we need to get

the matrix element M to get the differential cross-section for scattering

interaction. This will be calculated according to the following steps:
1- Label the incoming and outgoing four-momenta pi, p2, . .pn,, and the
corresponding spins s; , Sz, . . . , Sy, label the internal four- momenta q; ,
Jz,... and it shown in figure (2.17). Assign arrows to the lines as follows:
the arrows on external fermion lines indicate whether it is an electron or a
positron; arrows on internal fermion lines are assigned so that the
“direction of the flow” through the diagram is preserved (i.e., every vertex
must have one arrow entering and one arrow leaving). The arrows on
external photon lines point “forward”; for internal photon lines the choice

1s arbitrary. (See figure. 2.17)

Pa. 54 Ps: 35 Pg. 5g
- - B ~
o R
{ \
|
\ Y,
™ -
T E—
Pqe8y Parsz Pa: 53
Figure 2.17: A typical QED diagram, with external lines labeled. (Internal lines not
shown.

(62)



2- External Lines. External lines contribute factors as follows:

=

Elect : {
ectrons Outgoing ( /

)
Incoming ( /
Outgoing ( * ):
Incoming ( ‘_,f ). €
Outgoing ( ‘.r" ). ¥

3- Each vertex contributes by a factor called vertex factor.

u

<

Incoming ( " ):
)

Positrons: {

Photons: {

igey*

Where g, is the dimensionless coupling constant which is related to the

charge of the positron: g, = e\/4n /hc =+V4ma. In writing the
Feynman rules we are dealing with electrons and positrons. In general,
the QED coupling constant is = —q./4m / iic , where q is the charge of

the particle (as opposed to the antiparticle).

4- Each internal line contributes a factor called as propagator factor

. ) i(y*q,+mc

depends on the boson mass and is described as W for
igu
qZ

massive propagators and takes —== for photon.

5- For each vertex the conservation of energy and momentum must be
satisfied where a delta function must write in the form

2m)*6*(ky + k, + k3)

where the ks are the three four-momenta coming into the vertex (if an arrow

leads outward, then k is minus the four-momentum of that line, except for
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external antiparticle). This factor enforces conservation of energy and
momentum at the vertex.
d4

(2m)*

6- For each internal momentum q, write a factor and integrate.

7- Cancel the delta function and the result will include a factor
(2m)*6*(py +pz + - — D)

corresponding to overall energy-momentum conservation. Cancel this factor,

and what remains 1s —iM’

This can be summarized as

I-write down all diagrams contributing to the process (up to the desired order),
2- calculate the amplitude (M) for each one, and add them up to get the total
amplitude,

3- inserted into the appropriate formula for the cross-section.

As we can see, the previous procedure is applied for example electron-muon

scattering shown in figure 2.18

P15 Pa. 83

Figure 2.18: Electron-muon scattering.
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The simplest case is electron-muon scattering[4], for here only one diagram
contributes in lowest order. In applying the Feynman rules, we proceed

“backward” along each fermion line

@m)*f [19 o) gy D ol — 10 @) iger P @] 135)

X 8*(p1 —p3 — Q)6*(p2 + q — pa)d*q

Notice that the space-time indices on the photon propagator contract with
those of the vertex factors at either end of the photon line. Carrying out the
(trivial) q integration, and dropping the overall delta function, we can find the

matrix element of electron-muon scattering as

2

M= —%[ﬁ(s3)(p3)y“u(sl)(p1)][ﬁ(54)(p4)yﬂu(52)(pz)] (2.136)
(p1 —p3)

After we get the matrix element, we use it to find the scattering differential
cross-section by substituting into equation (2.134) (Fermi’s Golden Rule) of
two body scattering. This will be described in detail in the next chapter as we
will apply this theory for electron-proton scattering to get the scattering cross-

section for this interaction which is the main objective of this thesis.
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Chapter 3

Electron-Proton Elastic Scattering
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3.1 Elastic Electron-Proton Scattering

In particle physics[9], scattering experiments are the most effective tool of
research and allow studying the interactions between particles. It is a suitable
technique for probing the properties of the initial phase of nuclear matter and
their structure. A great importance to study electron-proton scattering because
it is the best prop to investigate the properties of the internal structure of

proton. Electron with a given energy E, and momentum p can resolve

distances of De' Brogli wavelength 4 where A =§ compared to proton

radius 7,,. At very low electron energies where 1 >> 7,,, the electron scattering

off proton is equivalent to that from point-like spin-less object as shown in

figure (3.1).

Electron Energy increases

(2) (b) (©) (d)

Figure 3.1: Probing the proton by increasing electron energy.

At low electron energy, A~7, the scattering is equivalent to that from an
extended charged object figure (3.1 b). At high electron energies, 1 < 1, the

wavelength is sufficient short to resolve sub-structure to consider the
scattering processes are incoherent from that obtained at low energy and are
due to proton constituent of quarks figure (3.1 c). At very high electron

energies A K 1, the proton appears to be a sea of quarks and gluons figure
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(3.1 d). The scattering processes are classified into two main categories. The
first is elastic-scattering in which the proton is treated as point-like with a
single scattering center. Second, is the inelastic-scattering in which proton is
considered as a convention of point-like matter called partons or quarks which
are treated as a collection of many scattering centers and responsible for
production of secondary new hadrons. At low electron energy, the proton is
a simple point charge, obeying the Dirac equation given in chapter 2. Consider
an elastic scattering for electron-proton at low energies € + p — e + p. The
lowest-order Feynman diagram is shown in figure (3.2). This figure shows
two vertices diagram first describe the interaction between electron-photon

and second 1s for photon-proton interaction.[4]

P Py

2 B

Electron Proton

Figure 3.2: Feynman diagram with single photon of electron-proton scattering.

In this section, we will investigate the scattering process in terms of QED.
QED theory applied in terms of Feynman diagrams, using Golden rules where
the exchange boson is virtual photon (y) has a four-momentum ¢g. We define
the important Lorentz-invariant four-momentum transfer squared represented

by O° where O° = - ¢°

02 ~ 4EE’ sin? (g) 3.1)
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An electron with initial four-momentum p; scatters from a proton of four-
momentum p; and emerges with a final four-momentum ps and p4. The virtual
photon transfers a four-momentum ¢ to the proton. In the case of elastic
scattering, (p; + q)? = pZ = M? where M is the mass of the proton. The
simplest case in which the spin scattering amplitude is obtained by applying

Feynman rules explained in chapter 2 and it has been given by the expression

2
M = = L [19 (o )y u ()] [2) )y, ()] G2)
(p1 — p3)

Where u and u represent the four spinors of spin s, for incoming and outgoing
particles respectively and eight y-matrices produced from two vertices. Each

vertex contributes a factor ig,y* where g, is dimensionless coupling

constant, g, = e\/ 41t /hc = V4ma which related to the electric charge e. If
we know the spins of the incoming and outgoing particles, we can write down
the appropriate spinors and do the matrix multiplication. In experiments,
beams of electrons have a random spin, we might measure only the number
of particles scattered at a particular angle 6 measured from direction of
incident beam. In this case the relevant cross-section is the average over all
initial spin configurations 1, and the sum over all final spin configuration f. In
principle, we could compute |M (i —» f)|? for every possible combination,
and then do the summing and averaging. The scattering cross-section of
electron of mass m off proton of mass M where M>>m is given by
2
Z_?l N (87':;\/1C> (1M1 e

where, (|M|?) is spin average amplitude. In practice, it is much easier to

compute (|M|?) directly, without ever evaluating the individual amplitudes.
Consider, for instance, the electron-proton scattering amplitude given in

equation (3.2) and squaring, we have
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ge
(p1 — p3)*
x [a@)y u)" [a(Hru)]”
Applying Casimir’s trick twice, (it explained in detail in appendix A) we find
(|M]?) as

|M|? = [a(3)y u(D][a(@)y,u2)] (3.4)

2o 9e
(|IM)?) = G — )" Tr[y*( @, + mc)y” (¢, + mc)] 3.5)
x Tr [y, (7, + Mc)y, (¥, + Mc)]
where, the trace for the electron fermion current is
Tr[y* (¥, + me)y” (v, + mc)] (3.6)

= 4[pi'p¥ + 3Py + 9" ((me)? — (p1 - pa))]
For each of the two particles they have two spin states and average must

include a factor 1/4. So

4g¢
(1M = ﬁ [pipY + pipY + g* ((Mc)? — (py - P3))] 3.7)
X [pzumv + P4, D2, + Guv ((Mc)? = (p; -m))]
89 ,
= m [((P1 - P2)(P3 - Pa) + (1 - P2) (D2 - P3) — (p1 - P3)(Mc)

— (p2 - pa)(Mc)? + 2(mMc?)?]
Apply in equation (3.3) for lab system in which electron is scattered from

heavier and fixed proton as shown in figure (3.3).
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E,p,

Before After

Figure 3.3: Electron scattering from a heavy target.

The unpolarized cross-section is independent of the azimuthal scattering angle
@. Therefore, it has two degrees of freedom, e.g. the energy of the incoming
electron £ and the scattering angle 6. where

E E’
P1 = (E'pl)i P2 = (MC, 0)' p3 = <?'p3>' Py = (MC' O)

Where p1 and ps are the incident and scattered electron momenta and E's are
the corresponding energies where p1.p3 = p? cosf and

(p1 —p3)? = —(p1 — p3)® = —pi —p5+2p; - p3 = —2p*(1 — cos H)

0
= —4p2sin? -
psin® -

and (p; - p3) = f—j — P11 P3 = p? + m?c? — p?cos 8 = m?c? + 2p?sin? g
(P11 P2)(P3 Ps) = (P1 - Pa) (P2 " P3) = (ME)Z
(p2 - Pa) = (Mc)?

Use previous equations in equation (3.7) to write spin average amplitude as

MI2) = geMc i 2 2. 20 (3.9)
(M%) = (pzsin2 (0/2)) ((mc) +prcos E)
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Then substitute with equation (3.8) in equation (3.3) to get differential cross-

section where g, = V4na
do ah 2
5= (szsinz (6/2)) {(mc)? + p?cos? (6/2)} (3.9)

This 1s called Mott formula and gives a good approximation to study the
differential cross-section for elastic electron-proton scattering. This equation
will be used to calculate the theoretical cross-section and will be compared
with corresponding values that obtained in experiments at different ranges of
energy. It gives regular disagreement with experimental data and will be given
in detail in chapter 4. This is explained due to new effects related to the
internal components of proton and will modify the Mott formula as the

following section.

3.2 Proton Form Factors

An additional treatment is applied by considering two effects of momentum

transfer q where g=p;-p; on both electron and proton in terms of tensors

uv

between electron-photon Ligjectron

and the corresponding tensor for photon-

proton Ly yroton - The scattering amplitude will take the form

4
(lMlZ) zg_eLHV L (310)

4 “electron™uv proton

and equation. (3.6) becomes

L+

electron — Z{prg + p%’pf + g,uv [(mc)2 — (pl . p3)]} (3.11)

By the same way the proton tensor is Ly, proton 18 Obtained by replacing

electron mass m by proton mass M and momenta of proton p, and p4 before

and after scattering process respectively

Ly proton = 2{}92“}941, + Daul2y + guv[(Mc)z — (p, - p4)]} (3.12)
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The obtained cross-section is similar to Mott formula given before in equation
(3.9). In order to study the effect of proton components, a second additional
formalism is applied on process at high electron energy elastic scattering. This
is by considering proton is not a simple point charge, and so, more additional
formalism is introduced according to the internal physical properties. The
incident electron has a chance to see an extended and a clear image of the
proton for its constituents which are affected by electric and magnetic form
factors. So, there must be a modification which called Form Factor F(g) added
to the Mott formula to match this behavior. This modification describes the
charge distribution inside the proton and is represented by electric form factor.
The cross-section for an electron scattering from a static charge distribution
of density p(X), in the non-relativistic limit is given as:[3,10]

do do

—_— = F(g?)|? (3.13)
0= aal , 1F@
where F(q?) is the Fourier transform of the charge distribution p(¥). The form

factor can be expressed as the Fourier transform as follows:
F(@) = J d*xp(x)e'T* (3.14)

It can be shown that F(g°) can be identified as the electric form factor, Gg(q°).
Similarly, if the source has an extended magnetic moment distribution, then
the Fourier transform of that distribution is the magnetic form factor Gy (¢°).
At low electron energy where A>> 7, and no sensitivity for charge
distributions inside proton F(q?)=1. At large ¢° the electron is sensitive to
charge distribution inside proton and F(g?)<I. At relativistic electron energy,
the electron props the extended proton and strong sensitive to electric and

magnetic distributions due to spin and orientation for both electron and proton
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in addition to the recoil energy of proton. In the lowest-order QED, an

additional process is represented as shown in figure (3.4).

P4 Py

Figure 3.4: Feynman diagram for electron elastic scattering off extended proton
constituents.

The blob on the right describes the mechanism of interaction of the photon
with the proton. Now, the left vertex describes the interaction of electron with
photon and photon propagator is unchanged as before. The average spin
amplitude (|M'|?) becomes sensitive to process at photon-proton vertex and

equation (3.10) rewritten as

4
9
<|M|2> = _iLlélléctron KHV proton (315)

where K, yroton 18 hadronic tensor and unknown quantity describing the
photon-proton vertex. The complete information about the target response is
contained in K,, with the nucleon spin, gauge invariance and symmetry
properties allow a parameterization of the hadronic tensor. The quantity g =
ps — P, and will represent p, to the initial proton momentum p. There are
different ways used to describe this tensor depending on the possible
mechanisms of photon-proton interaction. Energy of the experiments controls

the most and general tensor of the two vectors p and q is
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Ks
(Mc)?

Ky
(Mc)?

K>
(Mc)?

Koroton = —K1g"" + (phq” +p'q)  (3-16)

proton p¥p” + q“q” +
where K; are investigated and unknown functions of the scalar variable ¢° only
and p’=(Mc)’ is constant where M is proton mass and g.p=-¢°/2 . The K's

functions are not independent and will have the same dimensions where

q#Kﬂv — 1 (317)
Mc)? 1 1
K, = (M) Ki+7K, and Ks=5K, (3.18)

q2
The hadronic tensor K*¥ can be expressed in terms of just two unknown

functions say K;(¢°) and K>(q°) where

q“q" K 1 1
K;Il'gton = Kl (_gﬂv + q2 ) + (M(,Z‘)Z (p# + Eq#) (pv + Eqv) (319)

The two functions K; and K, are fundamental to describe the structure of the
proton and obtained from experimental data, which measure the cross-section
of elastic scattering. According to equations (3.11) and (3.19), the average

scattering amplitude is

292\” L : 2
<|M|2>=< j) {K1[<p1-p3>—2(mc)2]+1<2 L ”)NZ]} (3.20)

In the laboratory frame, proton is at rest with momentum components
p=(Mc,0,0,0) and incident electron with energy E scatters with emerging
energy E' at angle 6. Neglect electron mass compared to £ and E'. Electron

components are

E N E N A
pi=—(Lp) and  ps-—(1,Py) where  p; - Py = cos6
It i1s customary for space-like (the meaning of space-like: it means that the

interaction of scattering between electron and proton has only difference in
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space not time, so they called space like) processes to refer to the momentum

transfer squared as Q°=-¢°, which is a positive quantity. We find

gec® ( ., 8 6
2y — 2K 2 _ K 2 _) (321)
(%) = T Ersint (/2 \2fasin” 7 T Kacos™ 3

The energy of the scatter electron E' is determined from incident electron

energy £ and scattering angle 6 where

B = b (3.22)
1+ (2E/Mc?)sin? (0/2)
The cross-section for particles with reduces mass is given as
’ N2
do _ ( hE 2
aQ (SnMcE) (M%) (323)

Here the elastic cross-section for electron-proton is

!

d h ’E
d—; - (4MES£2 a0 2)) — [2Kysin? (0/2) + Kycos? (0/2)] G249

Equation (3.24) is known as Rosenbluth formula.[4] Notice that its analogy to
Mott cross-section in equation (3.9). Here the term E/E is due to the proton
recoil, called Mott correction in cross-section and the new term which is
directly with sin’(6/2) is due to the magnetic interaction produced from spin-
spin interactions.

In the next chapter, we will compare the results of theoretical predictions and
corresponding experimental data to investigate the contribution of electric and

magnetic form factors.
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Chapter 4

Comparison between Theoretical
Predictions and Experimental Data
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4.1 Scattering Experiments

The search for fine properties of nuclear materials requires different
experiments, especially at very-high energies. In this section we will briefly
talk about some laboratories which deal with scattering experiments and their
ranges of energy which help to compare the results of the theoretical
predictions obtained from this research. The scattering experiments at high-
energy are concentrated in a small number of places. The large accelerator
facilities employ a variety of acceleration devices and have sophisticated
arrays of detectors to permit analysis of the results. One of the most well-
known laboratories or colliders that deals with scattering experiments is
SLAC (Stanford Linear Accelerator Center) has a 2-mile linear accelerator. In
a single pass, it accelerates electrons to 25 GeV. Research at SLAC is
interested in the internal structure of proton and the properties of elementary
particles as charm quark, quark structure and the tau lepton. Another important
laboratory is Fermilab located near Chicago specializing in high-energy
particle physics. Fermilab's main injector is 3.3 km in circumference. It had
the Tevatron, one of the most powerful colliders. It was designed to reach 1
TeV. The third laboratory is the Brookhaven national laboratory in New York.
It was the first facility to employ a proton synchrotron up to 250 GeV. The
Relativistic Heavy Ion Collider (RHIC) at Brookhaven is a synchrotron
particle accelerator with a circumference of 4 kilometers. The search for
nuclear phase, called quark-gluon plasma, is achieved from high energy
collisions hadron-hadron, hadron-nucleus and nucleus-nucleus. The
experiments to date have involved accelerating two beams of gold ions in

opposite directions around the circle and then directing them together for a
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collision experiment which may produce the quark-gluon plasma state. The
last laboratory is the European organization for nuclear research known as
CERN laboratory for particle physics is located just outside Geneva,
Switzerland. It has a 27-kilometer circumference circular tunnel which houses
the Large Electron-Positron Collider (LEP). And the Large Hadron Collider
(LHC) which should produce proton-proton collisions in the energy range 10-
14 TeV. [11]

4.2 Theoretical Prediction and Experimental Data

In the following sections, we will calculate the cross-section for electron-
proton scattering at different values of electron energies using the derived
Mott formula as given in equation (3.9). These calculations are compared with
experimental data which were carried out in global laboratories at the same
energies to check the postulates which are assumed during these calculations.
These comparisons will be interested by elastic cross-section and their
modifications. Also, checkup of the proton electric and magnetic form factors
which are assumed for relatively high energy experiments.

4.2.1 Cross-section Calculations

This section studies the calculations of cross-section using Mott formula for
e-p scattering at wide range of energies and comparing them with
experiments. During scattering process of electron proton, the momentum
transfer Q> (GeV/c)*> by photon is calculated from the corresponding
experimental values measured from incident electron energy E, scattered

electron energy E’, and the angle of scattering 0, where Q? is calculated as
2 r 2 (O (4.1)
Q“ = 4EE’ sin <§> .
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First, at low-values of Q?in the range 0.2-1 (GeV/c)?, Elastic e-p scattering
cross-section is classified according to the magnitude of scattering angle into
forward in which 8 < 90° and backward at 8 > 90°.These comparisons at

different angles are shown in figure (4.1).
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Figure 4.1: Variation of cross-section of e-p elastic scattering with O° at different
scattering angles in forward directions. The solid line is the prediction of Mott formula
while the dashed line represents the modified factor.
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Figure (4.1) shows the variation of the cross-section of e-p elastic scattering
with Q? at different scattering angles in the forward directions. The solid line
represents the prediction of Mott formula and solid square represents the
experimental data measure and is given in references[12] and [13]. For both
theoretical and experimental data, the common observations enable us to
conclude that the cross-section decreases with Q? for all possible values of
angles 0. Theoretical predictions are similar but not identical with
experiments. The calculated values are greater than the experimental data in
the forward angels. From this, we can conclude that Mott formula can give
good physical analysis of scattering process but not identical due to a regular
spacing between experiments and theoretical predictions. This spacing
requires an additional modification to be matched with experimental data by
a suitable factor called modified factor MF. This factor reduces the spacing to
be in agreement with experiments and is shown by a dashed line shown in
figure (4.1). It is important to study this remark for the backward angles at the
same range momentum transfer Q. Figure (4.2) shows the same comparisons

but for backward angles 6>90°.
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Figure 4.2: Variation of cross-section of e-p elastic scattering with Q° at different
scattering angles in backward directions. The solid line is the predictions of Mott
formula while dashed line at modified factor.
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By The same common observations, one can conclude that the cross-section
decreases with Q? for all backward angles. Theoretical predictions are similar
but not identical with experimental data. The theoretical calculated values are
greater than the experimental data in the forward directions (figure 4.1) and
less in the backward one (figure 4.2) except for angle 110°. This may be due
to low statistics or a mixture between the two assumed kinematics (forward
and backward). Also, the same divergence between experimental data and
theoretical prediction depends on both 0 and Q2. Again, the additional
modified factor MF is applied to reduce this divergence to match the data and
is represented by dashed line. The variety in 6 could be explained in terms of
the dynamical parameters E, E', Q? and the possible magnitudes of the impact
parameter b. If the scattering is in backward direction, the impact parameter
is less than the radius of proton and, the electron encounters the proton to

transfer sufficient momentum and undergoes reverse scattering.

Second, scattering cross-section at relatively high values of Q? in the range 1-
25(GeV/c)? is studied for the same experimental parameters. At relatively high
values of Q% where Q%> 1 (GeV/c)?, the same comparisons are shown in figure
4.3. There is a similar divergence between experimental data [14,15] and the
calculated one. For all values of Q?, there is no elastic scattering in backward
directions and all recorded experimental data are forward where 6 < 90°. So,
the modified factor must be added to Mott formula and becomes in good
agreement with the experimental data, which is represented by dashed lines.

The physics of these factors will be discussed in the next section.
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Figure 4.3 : Variation of cross-section of e-p elastic scattering at relatively high-values
of Q’and at different scattering angles the solid line is the predictions of Mott formula
while dashed line at modified factor.

4.2.2 Electromagnetic Form Factors

Electromagnetic form factors MF are assumed parameters added to Mott
formula to match experimental data of e-p elastic scattering for both low and
high values of Q?. The dashed line in figures (4.1), (4.2) and (4.3) represents
these predictions. The predicted MF gives information on the electric and
magnetic properties of proton constituents, and mathematically represented
by F(Q?). They could be described in terms of the charge distribution and
magnetization of the proton. The variation of MF for all possible values of Q?
in forward and backward angles is shown in figure 4.4 (a) and (b) respectively

and given in table 4.1. Also, their dependance on 6 is shown in figure (4.5).
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Table 4.1: Modified Factor for Low Q7 (Forward and backward angles) and for relative
high values of Q°.

At small values of Q? Relative high values of Q2
o’ MF(Q’) o’ MF(Q) o’ MF(Q)
[Gev/c]? for 0 <90° [Gev/c]’ for 6 > 90° [Gev/c]’

0.1555 0.7317 0.1794 2.2850 1.0002 0.0807
0.1794 0.5888 0.1944 2.3842 1.0021 0.1972
0.1794 0.6782 0.2335 2.1720 1.1673 0.1536
0.1947 0.7199 0.2721 2.0532 1.1682 0.0626
0.2335 0.6105 0.2915 2.0730 1.4987 0.0356
0.2339 0.5407 0.2915 2.0633 1.5005 0.0354
0.2728 0.4903 0.2916 1.1874 1.5007 0.1004
0.2730 0.5709 0.3112 2.0157 1.7500 0.0325
0.2916 0.5387 0.3503 2.0169 1.7505 0.0239
0.2916 0.5344 0.3503 2.0062 1.7522 0.0259
0.2922 0.4631 0.3893 1.8897 1.7525 0.0752
0.2922 0.4652 0.3893 1.8791 1.9983 0.0186
0.3113 0.4235 0.3898 1.0924 2.0002 0.0177
0.3498 0.3909 0.4280 1.8572 2.0006 0.0578
0.3500 0.4738 0.5064 1.6301 2.0030 0.0254
0.3500 0.4698 0.5064 1.6194 2.3306 0.0120
0.3891 0.3714 0.5445 1.5681 2.3307 0.0430
0.3891 0.3734 0.5445 1.5574 2.4970 0.0149
0.3892 0.3018 0.5456 2.7220 2.5000 0.0146
0.3894 0.3005 0.5833 1.5261 2.5011 0.0101
0.3897 0.4402 0.5833 1.5155 2.7257 0.0093
0.3897 0.4364 0.6226 1.4197 2.8620 0.0073
0.3903 0.2859 0.6232 2.3693 2.9204 0.0069
0.4287 0.4103 0.6624 1.4475 3.0003 0.0230
0.4677 0.3771 0.7012 1.2655 3.0004 0.0062
0.4677 0.3735 0.7012 1.2552 3.0070 0.0089
0.4865 0.3537 0.7013 2.1170 3.2500 0.0074
0.5066 0.3381 0.7404 1.2747 3.5045 0.0047
0.5066 0.3347 0.7784 1.3589 3.7557 0.0032
0.5072 0.2175 0.7795 1.9435 3.8939 0.0036
0.5452 0.2690 0.8559 1.9852 4.0000 0.0040
0.5453 0.3116 0.8571 1.2409 4.4779 0.0023
0.5837 0.2935 1.0120 1.5126 5.0000 0.0022
0.5837 0.2905 1.0899 1.3124 5.0270 1.37E-03
0.5840 0.2618 1.1686 1.1518 5.0620 1.64E-03
0.5841 0.1800 5.0751 1.22E-03
0.5843 0.1951 7.3000 3.72E-04
0.5847 0.1799 9.6290 1.31E-04
0.6228 0.2697 9.9839 1.16E-04
0.6613 0.2653 11.9900 6.02E-05
0.6809 0.2667 15.7200 2.10E-05
0.7005 0.2582 19.4700 7.98E-06
0.7005 0.2553 23.2400 4.29E-06
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In both directions, MF decreases with Q? and takes fraction values in the
forward angles and is weakly dependent on 0. It suddenly increases to become
greater than unity for the backward angles. The backward scattering is more
sensitive to both Q? and 0. This process is hard elastic scattering and strongly
affected by the internal proton constituents. It may be explained by
considering that the two scattering patterns for both forward and backward
directions have limited criteria namely, small values of Q? and long
wavelength for the incident electron wave compared to proton radius r,. These
observations prove that there are different kinematics for elastic scattering
process according to the impact parameter b. Firstly, at forward angles in
which b > r,,, the center of scattering is located just outside the volume of the
proton. Secondly, process produces scattering in backward angles at b <r,, in
which the scattering center is located inside the proton volume and sensitive
to the internal constituent of proton. In both cases, the scattering electron can
feel the proton as integrated particle say point-like or collected particle with
homogenous distributions of mass, charge, and magnetization. The transfer
momentum Q? is consumed in a form of limited excitation for proton
constituents and proton still conserves its elastic components. At Q% = 0, it is
suitable to investigate the properties of the initial phase of the nuclear

materials and their constituents.

At relatively high values of Q?, the magnitudes of MF are much lower than
the corresponding values at low values of Q? and become strongly dependent
on the scattering angle. This behavior is noticed before at the backward
scattering for low Q?. It may be acceptable due to suitable reasons in which
the electron becomes more sensitive and affected by the electric and magnetic

properties of internal contents of proton. It is possible to conclude that for both
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backward scattering at low Q? and all angles at high Q? the electron becomes
strongly affected by the electric and magnetic fields that are produced from
the internal proton constituents. The effect of these fields increases with Q?
and it becomes the experimental tool to discover the internal constituents of

the proton. The variation of MF with different Q? at range Q*> 1 (GeV/c)*is

shown in figure (4.6).
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Figure 4.6: Modified factor dependence on Q° and angles of scattering.
It is very clear from the above figures that the Modified factor must be
introduced to match the experimental measurements with theoretical
predictions. Elastic scattering of electrons from protons reveals information
about the distribution of the charge and the magnetism. In general, proton
static properties, including mass, electric charge, and magnetic moment, have
been measured precisely [16]. The fundamental electromagnetic properties of
the proton are described by the dynamical physical quantities called
electromagnetic form factors, which give information about the proton
structure. It plays an important role in providing information about the volume
of static proton and strong interaction of many body systems of quarks and
gluon. One of the form factors is sensitive to the charge distribution in the
proton Gg(0Q°) and is called point-like electric form factor. The other is

sensitive to distribution of the magnetization current, and the magnetic
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moment of the proton Gy,(Q?) and it is called point-like magnetic form factor.
They are real-valued functions of the four-momentum transfer squared,
0*=—q¢*> 0. These can be measured from elastic electron-proton scattering
experiments. These factors provide valuable information on the nuclear
material at states close to ground state of the internal nuclear materials that
constituent of the proton. These form factors were determined by making
Rosenbluth separations [17, 18] of cross-section results. Experimentally, the
number of scattered electrons in a specific direction determines the form
factor and then compares the results with the corresponding theoretical
predictions. The equation (3.24) in chapter 3 which is called Rosenbluth
formula includes this modification. This can be simplified to another form by

introducing the electric form factor Gg and the magnetic form factor Gy to a

new form.
do a? E’' (ag + 1G4 (0) 0
—=————| ——cos? (=) + 2tGZsin? (—) 4.2)
2 GE+TGEy . . . :
Where K; = 16Gj; and K, = ) and t is Lorentz invariant quantity
2
T= 40? . Here, a brief note on this equation is observed as a combination of
1
2
multi-quantities. The first one is a—e which is called Rutherford cross-
4Ezsin4(5)

: E' - "
section and - due to recoiling of proton. The second two quantities are

: : . . : 6\ .
responsible for electromagnetic form factors, in which 2tGZsin? (E) is the

GE+1GH

2 (0 :
“aen 08 (2) is responsible

magnetic term due to spin interaction while

for electric and magnetic scattering.
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4.2.3 Rosenbluth Separation Method

In this section, it will be illustrated the method of separation of the
Rosenbluth equation to get the electric form factor Gg and the magnetic form
factor Gy separately. It shows the dependence of both factors on a wide range
of momentum transfer Q. In addition, it will be compared with other data for

other co-workers.

do B (da) {GE(QZ) + 165 (Q?) + 2762 (0?)tan? (9)} 4.3)
NS " 2

do ~ \da 1471

do . . . . . .
Where (d_ﬂ) is the non-spin elastic cross-section is given as
NS

(da) ~ (ahc)?cos? (g)
dns  4p2gins (%) |1+ 2(E/M,)sin? (%)] (4.4)

B (dU) E'
d'Q Mott E

In the one photon exchange approximation, the experimental un-polarized

e-p differential cross-section can be written in the rest frame of the initial

proton as

do _  tGu(Q®) +€GE(Q%) (4.5)
an, = Mt T 1+ D

: ) do . . ) ) : .
The elastic cross-section, dTG , 1s differential with respect to a single variable,

e

chosen to be the scattered electron angle. And € is the degree of virtual photon

linear polarization where

-1

€ =|1+2(1+ 7)tan? (g)]
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2ME?(1—cos 6
and Q% = ( )
M+E(1—cos 0)

These two form factors encapsulate the elastic structure of the proton. The

2
combination % + GZ appearing in equation (4.3) is often called the reduced

cross-section oyq defined by

_ e(l1+1)E’ (da) (da) (4.6)
orea =\~ F\an), )/ \@) e
S d_a e(l+1) 4.7)
R TORE Y

and 1s represented in a linear equation as

Orea = = G%,(0%) + 63, (0% (48)

The reduced cross-section oq described in equation (4.8) is a function in both
polarization € and t, which are related to the experimental kinematic
parameters. Their values are obtained from experimental measurements [12,

14, 15, 19] at different values of Q? and shown in figure (4.7).
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By varying beam energies and scattering angles, one can measure the reduced

cross-section at a fixed values of 0, but for different values of € [12, 14, 15,

19]. Then, performing a linear fit of these cross-section data as a function of

€, as shown in figure (4.8).
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Figure 4-8 : Rosenbluth Separation Method

2
One can determine G / 7 as the slope and G?), as the intercept. The magnitudes

of both the electric

and the magnetic form factors are calculated for each value

of Q?. The data of this work is represented by star sign (*) in table 4.2 and is

compared with the corresponding values from different groups given in

reference[20]. These comparisons are shown in figure (4.9), and their values

are given in table 4.2.
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Table 4.2 : Values of electric and magnetic form factors with R-ratio at

possible O°.
Q? (Gev/c)? Ge Gu R-ratio Ref.
0.179 0.6187 = 0.0309 1.6988 + 0.0849 1.0162 £+ 0.0508 *
(0.6472£0.0178)  (1.63170.0532) o 24
0.272 0.5262 = 0.0263 1.3623 +0.0681 1.0776 + 0.0539 *
(0.4982+ 0.0100)  (1.4147+0.0116)  (0.9830 £0.0140) 25
0.292 0.5074 + 0.0254 1.3076 £+ 0.0654 1.0827 £+ 0.0541 *
(0.5005£0.0226)  (1.3041: 0.0336) B 24
0.389 0.4129 + 0.0206 1.1202 £+ 0.0560 1.0283 + 0.0514 *
(0.4020 0.0046)  (1.1542+0.0093)  (0.9720 £0.0170) 25
0.467 0.3662 + 0.0183 0.9879 + 0.0493 1.0344 + 0.0517 *
(0.3522+£0.0203)  (0.9777+0.0212) o 25
0.545 0.3273 £ 0.0164 0.8789 + 0.0439 1.0390 + 0.0519 *
(0.3136£0.0227)  (0.87420.0196) . 24
0.584 0.2929 + 0.0146 0.8285 +0.0414 0.9865 + 0.0493 *
(0.2911+ 0.0039)  (0.8458+ 0.0058)  (0.9600 +0.0160) 25
0.623 0.2738 = 0.0137 0.7845 + 0.0392 0.9738 + 0.0487 *
0.701 0.2785 = 0.0139 0.6958 + 0.0348 1.1169 + 0.0558 *
(0.2723£0.0218)  (0.6925+ 0.0155) . 24
0.856 0.2118 + 0.0106 0.6244 +0.0312 0.9467 + 0.0473 *
1.000 0.1738 + 0.0087 0.4863 + 0.0243 0.9975 + 0.0498 *
(0.1710+ 0.0044)  (0.4915+0.0043)  (0.9710+ 0.0260) 24
1.750 0.0799 + 0.0039 0.2437 £ 0.0122 0.9157 + 0.0458 *
(0.0708£0.0017)  (0.2523+0.0010)  (0.7840 £0.0200) 25
2.003 0.0821 = 0.0041 0.1920 + 0.0096 1.1935 £ 0.0596 *
2.497 0.0486 + 0.0024 0.1425 £ 0.0071 0.9518 + 0.0476 *
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Continued table 4.2

Q? (Gev/c)? Gk Gu R-ratio Ref.
(0.0439 £0.0016)  (0.1325:0.0019)  (0.9240::0.0349) 26
3.007 0.0461 £+ 0.0023 0.1021 £ 0.0051 1.2600 £+ 0.0630 *
4.000 0.0205 £ 0.0010 0.0655 +0.0033 0.8711 £ 0.0435 *
(0.0245£0.0019)  (0.0648+0.0005)  (1.0580 £0.0890) 24
(0.0266£0.0017)  (0.0629+0.0009)  (1.1837+0.0787) 26
5.000 0.0148 = 0.0007 0.0439 + 0.0022 0.9467 + 0.0473 *
(0.0157£0.0022)  (0.0436+0.0009)  (1.0060+0.1400) 24

It is noticed that at all given values of Q?, the magnitudes of the magnetic form
factor Gy(Q’) are higher in value than the corresponding value for the electric
factor Gg(Q°). With increasing Q?, the two factors decrease gradually. This is
in good agreement with experimental data [21]. This behavior proves that all
possible systems that describe the internal charge distribution of the proton
are mostly dynamical. The calculations predicted by different research groups
[20] are in good agreement and may be represented by a unified general curve

within the given range of Q.

4.2.4 R-Ratio

The R-ratio is defined as the quantity of transverse to longitudinal
polarizations and thus from the phase shift of the azimuthal scattering
distribution of the experimental data. This ratio is useful for cross-section
measurements. The electromagnetic form factor interest stems from the fact
that changes of just a few percent in the nucleon form factors at low Q? have

direct implications on our understanding of the nucleon structure [22, 23]. In
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Born approximation the ratio R is related to the electromagnetic form factors

by the equation:

GE E, +E.

R = —_— = —
tor = " oy 2) P,

where Pt and Py are the recoil proton polarization transverse and longitudinal
to the proton momentum. The magnitudes of R-ratio at different values of Q?
and the corresponding values of Gg and Gy are also given in table 4.2 and its
variation with Q? is shown in figure (4.10). The corresponding values from
many references [24, 25]are shown in the same figure. In this work, most of
extracted values of Gg and Gy at different values of Q* are agree with
corresponding values calculated by different groups in Refs. [24, 26, 27]
which used different tools of data analysis. Differences in the allowed region

may be due to the errors of fitting parameters used in these tools.
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Figure 4.10 : Dependence of R-ratio on the electromagnetic form factors and
O’ (a) at small values of O° and (b) at relatively high-values of O°.

This dependence can be divided into two ranges. First, at low values of Q* up
to 0.6 (GeV/c)* as shown in figure 4.10 (a) second, at high values up to 6
(GeV/c)? as shown in figure 4.10 (b). In the two ranges, the values of R-ratio
are fluctuated around unity with acceptable range for all compared data. In
figure 4.10 (a), the R-ratio becomes R>1, which means that the medium
constituent of the proton is most parabolic toward electric form factor and
inverted for high Q? (figure 4.10 b) towards the magnetic form factor. This
indicates that a suitable nature of the medium inside proton, in which both
electric and magnetic properties fluctuate at possible excitation energies. It
proves that the medium in the ground state is mostly static constituents and

directed dynamically with increasing the square momentum transfer [29].
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4.2.5 Charge Proton Radius

Proton radius and volume are important quantities to describe the structure
of hadrons. There are many experimental techniques used to measure the
radius of proton, including e—p scattering[28]. Experimentally, the charge
radius of the proton can be determined using two different techniques. First,
i1s the measurements of electron—proton elastic scattering cross-sections.
Second, is the high-resolution spectroscopy of the hydrogen atom. A decade
ago, the precision of the atomic spectroscopy method was greatly improved
using muonic hydrogen atoms, wherein the electron is replaced by a muon.
However, the value of the proton radius disagreed with previous
determinations, giving rise to the ‘“proton-radius puzzle”. Electric and
magnetic form factors are associated with the hadronic matter distribution in
hadron volume. So, there is good relationship between the volume of proton
and electric and magnetic form factors especially at small values of Q2. The
root mean square radius of the elastically scattering hadrons can be calculated
by the following relation [30]:

6 dG(Q*)

OB (4.10)

(r?) = -

Q*=0

Therefore, the charge radius can be determined from the slope of the form
factors dGr/d(” at Q*=0. Previously it showed in figure 4.9 (a) the dependence
of both the electric and the magnetic form factors on Q2. This dependence is

fitted to the following equation

Q° r 4.11)
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This equation is described up to 10 (Gev/c)? by the dipole approximation

expression and its derivative with respect to Q? is

dG(Q¥) =~ —2.8169 4.12)

dQz  [1+ 1.4084 Q2]3

Then it is applied when Q? tends to zero. In this analysis, the root mean square
value of the scattering proton radius is calculated using equation (4.10), note
that 1 GeV/c = 5.068 fm~. The corresponding value of r, is equal to
0.81+£0.04 fm. The errors are obtained from the fitting parameters. The
comparison of this value with the previous measurements at different

techniques is shown in figure (4.11).
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Figure 4.11: Proton radius from different theoretical and experimental procedures.

In figure 4.9(a), the slope of the form factors dGg /dQ? at different values of
Q?gives the possibility to calculate the radius at which the electron explores

the proton and is responsible for scattering called radius of scattering rs where
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rs < rp. The root mean square value of the scattering radius can be derived
from equations (4.10, 4.11 and 4.12) at different values of Q2 The
corresponding calculations of the scattering radius at each value of Q2 are
shown in figure (4.12). Its magnitudes are decreased with increasing the
transfer square momentum in regular and continuous radius. It can be fitted
by the exponential decay curve represented by the dash curve. There is similar
dependence of the wavelength A for photon which responsible for the energy
carriers on Q? and may be fitted by similar exponential function but with
different fitting parameters represented by dashed line in figure (4.12). The
proton scattering area decreases with Q2 and is simply represented in figure
(4.13).
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Figure 4.12: Variation of scattering radius and wavelength of photon with Q°.
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Figure 4.13: Scattering area decreases with increasing in Q°.

It concludes that, with increasing Q? both scattering radius and the
wavelength of the photon are decreasing to allow the scattering process to take
place from a single or group of constituents of the internal proton contents.
This allows the production of the fine image of the internal proton structure
and hence discovering the physical properties of its constituents. The
resolution of the resulting image increases with the increase in Q2, and this
leads to discovering the nature of the initial nuclear material in its primitive

phase.
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CONCLUSION

This thesis studies the physical properties of nuclear materials which are the

main constituents of hadron like proton. Electron-proton scattering can satisfy

this aim, and the following conclusion can be summarized as:

1.

There are two mechanisms of electron scattering off proton, one of
them is in a forward direction where 8 < 90° and the other is backward
6 > 90°. This is explained by considering scattering in the forward due
to a single point-like particle in which the impact parameter is greater
than the proton radius. Scattering in backward direction is explained
due to internal components of the proton where impact parameter is less

than the proton radius.

Two ranges of momentum transfer Q? are investigated. First, at low
Q? < 1 (GeV /c)?, there are two mechanisms are found (forward and
backward). Second, at high Q% > 1 (GeV /c)? the forward scattering

only is found.

There is a regular spacing between theoretical cross-section (Mott

Formula) and experimental data for all ranges of momentum transfer
o
Modified Factor (MF) is added to Mott formula to make an agreement

between theoretical prediction and experimental data.

This MF is explained as the electric and magnetic form factors which
describes the charge distribution and magnetization distribution of the

proton components.
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6. Electric and magnetic form factors Gg' Gy are calculated from reduced
cross-section g, by using Rosenbluth separation method and agree with
other theoretical techniques. They depend on the angle of scattering and

values of momentum-transfer.

7. At low values of momentum transfer, the majority of these factors are
for electric rather than magnetic. It proves that the medium in (or near)
the ground state is mostly static constituents and becomes dynamically
with increasing the momentum transfer. At Q2 ~ 0, it is suitable to
Investigate the properties of the initial phase of the nuclear materials

and their constituents.

8. The charge radius of the proton is calculated to be r,,  0.81 fm and it

is found to be acceptable with the previous measurements at different

techniques.

9. The scattering radius is also calculated and is found to be as an

exponential decay with momentum transfer.

10.The photon wavelength is decreasing with increasing Q2. It allows
giving a fine image of proton components and increases the possibility

of scanning proton constituents.

These points are concluded to investigate the physical properties of the initial
phase of nuclear matter, which are the main constituents of hadrons like
proton. Quantum electro-dynamic theory gives a reasonable description for
electron-proton scattering and gives quantitative formula for elastic cross-
section. At low-values of momentum transfer, the scattering process is

explained by considering proton is a single point-like particle, while at high-
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values, scattering is due to the components of proton constituents.
Comparison with experimental data shows regular spacings which require an
additional modified factor MF must be added to introduce good agreement
with experimental results. These MFs depend on both the angle of scattering
and the four-momentum transfer. The obtained values of electric and magnetic
form factors agree with the different values that obtained by other theoretical
techniques. The charged proton radius is found to be 0.81+0.04 fm, which is
the upper limit of the scattering radius. Finally, the scattering radius and the
wavelength of the photon decrease with increasing Q? at which the electron

can scope the fine constituents of the internal structure of the proton.
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APPENDIX A

Before starting in explaining Casmir’s trick, we introduced some notes about

Dirac equation and its solutions. It is found that free electrons and positrons

of momentum p = (E/c, p), with E = \/m2c2 + p2c?, are represented by the

wave functions
For Electrons

Y(x) = ae‘(i/ﬁ)p-x”(s)(p) (A.1)
and positrons

W(x) = aet/MPxy) (p) (A.2)
where s takes possible values as s = 1, 2 for the two spin states. The spinors

u® and v for particle and antiparticle respectively are satisfied the four

momentum-space Dirac equations:
(y“p# — mc)u =0 and (y“p# + mc)v =0

and their adjoints, # = u'y%, v = vTy?, satisfy.

u(y*p, —mc) =0 and 7(y*p, + mc) =0
They are orthogonal,

My =0 and 7MWy =0
normalized,
uu = 2mc and Vv = —2mc

and complete, in the sense that
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z u®a® = (y#p, + mc) (A.3)

s=1,2

Z vOFE) = (y#p, —mc) (A.4)

§=1,2
Meanwhile, a free photon of momentum p = (E/c, p), with E = |p|c is

represented by the wave function of Photons.

et
A#(x) = qe~ WP (A.3)

where s = 1, 2 for the two spin states is replaced and represents two states of

polarizations of the photon. The polarization vectors eé) satisfy the

momentum space Lorentz condition:
etp, =0
They are orthogonal, in the sense that.
ef‘l*)eﬂ(z) =0

And normalized.

In the Coulomb gauge
e’ =0 and ep =0
and the polarization three-vectors obey the completeness relation.

z (E(s))i(ffs))j = 0;j — DiDj (A.6)

§=1,2
In some experiments the incoming and outgoing electron (or positron) spins
are specified, and the photon polarizations are given. If so, the next thing to

do is insert the appropriate spinors and polarization vectors into the expression
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and compute the matrix element |M |2, the quantity we need to determine
cross-sections and lifetimes. More often, however, we are not interested in
spins. A typical experiment starts out with a beam of particles whose spin
orientations are random, and simply counts the number of particles scattered
in a given direction. In this case the relevant cross-section is the average over
all initial spin configurations, 1, and the sum over all final spin configurations,

f: In principle, | M (i = f)|?

we could compute for every possible combination, and then do the summing

and averaging:(|M|*)average over intial spins, sum over final spins,of
- 2
NAGI D]
let us introduce some convenient notation known as Feynman slash notation.
4= aty,, "=yta;, and T =yoTTy°

In practice, it is much easier to compute {|M|?) directly, without ever
evaluating the individual amplitudes. Consider, for instance, the electron-

proton elastic scattering will be represented by Feynman diagram 1.

P P4

g a

Electron Proton

Figure 1 Feynman diagram with single photon of electron-proton scattering

Squaring amplitude, we have
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4

IM|? = Ay uD][a4)y,u)] (A7)

(p1 — p3)*
X [a@)y uDI" [u®ru()]

We must handle quantities of the general form.

G = [a(@Tu®)[a(@ku®)]’ (A-8)
where (a) and (b) stand for the appropriate spins and momenta, and I3 , and
I, are two 4 x 4 matrices. To begin, we evaluate the complex conjugate (which

is the same as the Hermitian conjugate, since the quantity in brackets is a 1 x

1 “matrix”):
[a(@Tub)]" = [u(@ty Tu®)]t = w(b) iy tu(a)
Now, ¥°T = y°, and (¥°)? =1, so
[a(a)Tub)]" = u(d)'y°y°Ify%u(a) = @(b)Lu(a)
Where T, = y°I,y?°

G = [a(@)Tu(d)][ab)u(a)] (A-9)
We are ready now to sum over the spin orientations of particle (b). Using the

completeness relation

> G=u@nd > u @) () Hu@

b spins sp=1,2 (AIO)
= ﬂ(a)Fl(ﬂb + myc)u(a) = 4(a)Qu(a)
where Q is a temporary shorthand for the 4 X 4 matrix
Q =T(p, + mpc)ly, (A.11)

Next, we do the same for particle (a):
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Y Y 6= 2 169 () QuE (pg) (A.12)

a spins b spins

DD (105 (o),

Sqa=1,2

= Qij z u(Sa) (pa)acsa) (pa) (A'13)

Sq=1,2 ..
ji
= Q;;(p, + mac)]_i =Tr (Q(lzia + mac))
Or, writing out the matrix multiplication explicitly (i and j are summed from

Ito 4): where Tr denotes the trace of the matrix (the sum of its diagonal

Tr (4) = Z A

elements):

Conclusion

> a@nu®E@nu®)
all spins (A-14)

=Tr [y (¢, + mpc) (@, + myc)]
This may not look like much of a simplification but notice that there are no
spinors left; once we do the summation over spins, it all reduces to matrix
multiplication and taking the trace. For want of a better name, it is called

“Casimir’s trick,” since Casimir was apparently the first one to use it.
, Yy

In the case of electron-proton scattering, Casimir’s trick will be applied twice

as the matrix element squared is

(133)



4

|M|? = ﬁ @)y uD][a(®)y,u(2)] (A.15)

x [u@)y u" [a(®ru@)]
So, Casimir’s trick will be applied for the term [@(3)y*u(1)][@(3)y u(1)]*
to become T [y (i, + me)y” (i, +mc)]
then applying it to the second term [@(4)y,u(2)][@(4)y,u(2)]*
to become Tr [y, (7, + Mc)y, (¥, + Mc)]

So, the final result will be

4

(111 = ﬁ” [y, +me)y* (s +me)] )

x Tr |y, (¥, + Mc)y, (¢, + Mc)]
where m is the mass of the electron and M is the mass of the proton. The factor
of Y4 is included because we want the average over the initial spins; since there
are two particles, each with two allowed spin orientations, the average is a
quarter of the sum. Casimir’s trick reduces everything down to a problem of
calculating the trace of some complicated product of y matrices. This algebra

is facilitated by a number of theorems. Thus

Tr (y“(]él + mc)y" ([é3 + mc)]

= 4[pi'p¥ + vy oy + g*' ((mc)? — (p1 - p3))]

The second trace is the same withm — M, 1 — 2, 3 — 4 and Greek indices

(A.17)

are lowered.
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Tr [vu(#, + M)y, (v, + Mc)]

(A.18)
=4 [pz#mv +Pa,P2, + G ((Mc)? — (p; - p4))]
So, the result of average matrix element squared is.
2 4gg Hov Hov v 2
(IM%) = —=—= [pipY + pipY + 9" (M) — (p1 - p3))]

(p1 —p3)

X |PayPay + Do P2, + Gun (M) = (02 - p))] (A.19)
8gc

(IM)?) = YY) [(P1 - P2) (03 - Da) + (P1 - D) (D2 - P3)
(p1 — p3)
—(p1 - p3)(Mc)? — (p; - Pa)(MC)? + 2(MM c?)?]
Note that this is independent of the reference frame. To consider the problem
in a specific reference frame, write out the relevant four vectors in that

reference frame and do the calculation. Consider the case of electron

scattering from a heavy proton at rest:

pl' ................................

Figure 2 Kinematics of lap System
Assume M >>m so that we can ignore the recoil of the heavy spin %2 particle.

From the given figure
E - E R
P1 = (Z;p1)a Dy, = (MC, 0), D3 = (Z,p3) and Dy = (MC, 0)
Il =1psl=p

ﬁ1 'ﬁ3 = PZCOS 0
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And the differential cross-section is given by

do B
dQ  8mMc

(IM]?)
The average squared matrix element

94
(IM]?) = 8——=3 {01 p2)(P3 - Ps)
(p1 —p3)* (A20)
+ (P2 - P3) (1 - Pa) — (p1 - P3) (Mc)?

— (p2 - Pa)(Mc)? + 2(mMc?)?}

(p1 — p3)2 = —(p1 — 53)2 = _|ﬁ1|2 - |l3)3|2 +2p; - ps = —2p(1 — cos )
= —4p?sin® (0/2) ()

2
(p1-p3) = ?_ (ﬁ1 : ﬁ3) = PZ + m?c? — pZCOS 0

= m?c? + 2p?sin? (0/2) (b)
(P1 - P2) (03 - Pa) = (p1 - P) (P2 - P3) = (ME)? @)
and  (p; - pa) = (Mc)? (d)

Substitute with a, b, ¢, and d into (A.20) it becomes as

4

9
(—4p?sin® (6/2))?
— (m?%c? + 2p?sin? (6/2))(Mc)? — (Mc)?(mc)?
+ 2(mMc?)?}

(17]%) =8 {(ME)? + (ME)?

2

g
4p?sin? (6/2)

— (Mc)?(mce)? + 2(mMc?)?}

(|M|%) = 8( ) {2(ME)? — (m?c? + 2p?sin? (8/2))(Mc)?
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gz
4p2?sin? (6/2)
— 2(Mc)?p?sin? (8/2) — (m?c?)(Mc)? — (M?c?)(m?c?)

+ 2(mMc?)?}

2
(|]%) = 8< ) {2M?(p*c? + m*c*)

292

4p?sin? (6/2)

2
(|M|?) = 2( ) {2M?c?(m?c? + p% — p?%sin? (0/2))}

ZM 2
= (pzsglz (;/2)) {m2c? + p%cos? (0/2)}

2 g*Mc 2 202 4 p200g2 (A.21)
— 2 .
(lMl ) (pzsinz (9/2)> {m c +p COoS (9/ )}
Then substitute with this expression into the equation of differential cross-
section.
do ah 2
o~ 2 4 p?cos? (/2 (A.22)
dQ <2pzsin2 (9/2)> {(mc)* + p“cos” (6/2)}

Where g = V4ma. This is called Mott formula of differential cross-section.

This is a good approximation in low energy electron-proton scattering.

In the case that p? << (mc)? this means that the incident electron is non-

relativistic, so the expression reduced to

2

do _ ah 2 - ahmc
a0 - (2pzsin2 (9/2)) (me)” = <2pzsin2 (9/2))

. e? .
Using @ = — and p=mv the expression becomes
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do e? 2
dQ \2mv2sin2 (0/2)

which i1s Rutherford formula that i1s used in classical mechanics in non-

relativistic regions.
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